hackaton / descritption_v2.py
bneay's picture
py scripts
4256453
# enhanced_data_processing_v2.py
# TAQATHON 2025 - Enhanced Data Processing with Equipment Intelligence
# Incorporates dual-field analysis + equipment criticality patterns from analysis
import pandas as pd
import numpy as np
import re
from collections import Counter, defaultdict
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
import warnings
warnings.filterwarnings('ignore')
print("="*70)
print("TAQATHON 2025 - ENHANCED DATA PROCESSING v2.0")
print("Equipment Intelligence + Dual-Field Analysis + Noise-Robust Features")
print("="*70)
# ============== STEP 1: LOAD DATA AND BASIC SETUP ==============
print("\n" + "="*50)
print("STEP 1: LOADING DATA AND BASIC SETUP")
print("="*50)
# Load the data
try:
df = pd.read_excel('Taqathon_data.xlsx', sheet_name='Oracle')
print(f"✓ Successfully loaded dataset: {df.shape}")
except FileNotFoundError:
print("❌ Error: Taqathon_data.xlsx not found!")
exit(1)
print("Columns:", df.columns.tolist())
# Check for missing values
print("\nMissing values per column:")
print(df.isnull().sum())
# Clean data
df = df.dropna(subset=['Description', 'Description de l\'équipement'])
print(f"After removing missing key fields: {df.shape}")
# Convert date column to datetime
df['Date de détéction de l\'anomalie'] = pd.to_datetime(df['Date de détéction de l\'anomalie'])
# Remove duplicates
df = df.drop_duplicates()
print(f"After removing duplicates: {df.shape}")
# ============== STEP 2: EQUIPMENT INTELLIGENCE SETUP ==============
print("\n" + "="*50)
print("STEP 2: EQUIPMENT INTELLIGENCE CLASSIFICATION")
print("="*50)
# Based on our analysis - Equipment Type Criticality Scores
EQUIPMENT_TYPE_SCORES = {
# High-risk electrical equipment (8.0+ avg criticality)
'ELECTRICAL_CRITICAL': {
'keywords': ['ALTERNATEUR', 'TRANSFO PRINCIPAL', 'PROTECTION ALTERNATEUR'],
'score': 8.0
},
# Turbine and power generation systems (7.0+ avg)
'TURBINE_SYSTEMS': {
'keywords': ['TURBINE', 'SOUPAPE REGULATRICE', 'REFRIGERANT HUILE', 'POMPE DE SOULÈVEMENT'],
'score': 7.5
},
# Cooling and ventilation systems (7.5+ avg for critical cooling)
'COOLING_CRITICAL': {
'keywords': ['VENTILATEUR DE REFROIDISSEMENT', 'REFROIDISSEMENT TP', 'MOTEUR VENTILATEUR DE REFROIDISSEMENT'],
'score': 7.5
},
# Standard electrical equipment (6.0-7.0 avg)
'ELECTRICAL_STANDARD': {
'keywords': ['DISJONCTEUR', 'TRANSFORMATEUR', 'MOTEUR', 'ARMOIRE', 'GROUPE'],
'score': 6.5
},
# Heating systems (6.0+ avg)
'HEATING_SYSTEMS': {
'keywords': ['RECHAUFFEUR', 'RÉCHAUFFEUR', 'CHAUDIERE', 'CHAUDIÈRE'],
'score': 6.5
},
# Ventilation systems (6.0+ avg)
'VENTILATION_SYSTEMS': {
'keywords': ['VENTILATEUR', 'TIRAGE', 'SOUFFLAGE', 'AIR PRIMAIRE', 'AIR SECONDAIRE'],
'score': 6.0
},
# Process systems (5.5+ avg)
'PROCESS_SYSTEMS': {
'keywords': ['POMPE', 'SOUPAPE', 'VANNE', 'CONVOYEUR', 'BROYEUR', 'COAL FEEDER'],
'score': 5.5
},
# Auxiliary/maintenance systems (5.0+ avg)
'AUXILIARY_SYSTEMS': {
'keywords': ['DECRASSEUR', 'DÉGRILLEUR', 'FILTRE', 'CAPTEUR', 'TRANSMETTEUR'],
'score': 5.0
}
}
# Redundancy detection patterns (from analysis)
REDUNDANCY_PATTERNS = {
'SINGLE_CRITICAL': {
'patterns': [r'PRINCIPAL', r'UNIQUE', r'^(?!.*[AB]$)(?!.*N°[0-9])(?!.*[0-9]$)'],
'multiplier': 1.3
},
'DUAL_SYSTEM': {
'patterns': [r'\b[AB]$', r'N°[12]$', r'PRIMAIRE$', r'SECONDAIRE$'],
'multiplier': 1.0
},
'MULTIPLE_SYSTEM': {
'patterns': [r'N°[3-9]$', r'N°[0-9][0-9]$'],
'multiplier': 0.8
}
}
# Section risk multipliers (from analysis)
SECTION_RISK_MULTIPLIERS = {
'34EL': 1.2, # Electrical - highest critical case rate
'34MM': 1.1, # Mechanical - high turbine/oil systems
'34MD': 1.1, # Medium risk
'34MC': 1.0, # Lower critical case rate
'34CT': 1.0 # Control systems
}
def classify_equipment_type(equipment_desc):
"""Classify equipment based on criticality analysis"""
equipment_upper = str(equipment_desc).upper()
for category, info in EQUIPMENT_TYPE_SCORES.items():
for keyword in info['keywords']:
if keyword in equipment_upper:
return category, info['score']
return 'UNKNOWN', 4.5 # Default for unclassified
def detect_equipment_redundancy(equipment_desc):
"""Detect equipment redundancy based on naming patterns"""
equipment_upper = str(equipment_desc).upper()
for redundancy_class, info in REDUNDANCY_PATTERNS.items():
for pattern in info['patterns']:
if re.search(pattern, equipment_upper):
return redundancy_class, info['multiplier']
return 'UNKNOWN_REDUNDANCY', 1.0
# Apply equipment intelligence
print("Applying equipment intelligence classification...")
# Equipment type classification
equipment_classifications = df['Description de l\'équipement'].apply(classify_equipment_type)
df['equipment_type_class'] = [x[0] for x in equipment_classifications]
df['equipment_base_criticality'] = [x[1] for x in equipment_classifications]
# Equipment redundancy detection
redundancy_classifications = df['Description de l\'équipement'].apply(detect_equipment_redundancy)
df['equipment_redundancy_class'] = [x[0] for x in redundancy_classifications]
df['equipment_redundancy_multiplier'] = [x[1] for x in redundancy_classifications]
# Section risk multiplier
df['section_risk_multiplier'] = df['Section propriétaire'].map(SECTION_RISK_MULTIPLIERS).fillna(1.0)
# Combined equipment risk score
df['equipment_risk_score'] = (df['equipment_base_criticality'] *
df['equipment_redundancy_multiplier'] *
df['section_risk_multiplier'])
print("✓ Equipment intelligence classification completed")
print(f"Equipment type distribution:")
print(df['equipment_type_class'].value_counts())
print(f"\nRedundancy classification:")
print(df['equipment_redundancy_class'].value_counts())
# ============== STEP 3: DUAL-FIELD TEXT ANALYSIS ==============
print("\n" + "="*50)
print("STEP 3: DUAL-FIELD TEXT ANALYSIS")
print("="*50)
# Create combined text field for comprehensive analysis
df['combined_text'] = df['Description'].fillna('') + ' ' + df['Description de l\'équipement'].fillna('')
df['combined_text_lower'] = df['combined_text'].str.lower()
# Basic text features for both fields
df['description_length'] = df['Description'].str.len()
df['description_word_count'] = df['Description'].str.split().str.len()
df['equipment_desc_length'] = df['Description de l\'équipement'].str.len()
df['equipment_desc_word_count'] = df['Description de l\'équipement'].str.split().str.len()
df['combined_length'] = df['combined_text'].str.len()
df['combined_word_count'] = df['combined_text'].str.split().str.len()
print(f"Text analysis completed:")
print(f"Average description length: {df['description_length'].mean():.1f} chars")
print(f"Average equipment description length: {df['equipment_desc_length'].mean():.1f} chars")
print(f"Average combined length: {df['combined_length'].mean():.1f} chars")
# ============== STEP 4: ENHANCED KEYWORD EXTRACTION ==============
print("\n" + "="*50)
print("STEP 4: ENHANCED KEYWORD EXTRACTION (DUAL-FIELD)")
print("="*50)
# Enhanced equipment keywords (from analysis + original)
equipment_keywords = {
'pompe': ['pompe', 'pompes'],
'vanne': ['vanne', 'vannes'],
'ventilateur': ['ventilateur', 'ventilateurs', 'ventilo'],
'moteur': ['moteur', 'moteurs', 'moto'],
'alternateur': ['alternateur', 'alternateurs'], # HIGH RISK
'transformateur': ['transformateur', 'transformateurs', 'transfo'], # HIGH RISK
'turbine': ['turbine', 'turbines'], # HIGH RISK
'chaudière': ['chaudière', 'chaudières', 'chaudiere'],
'réchauffeur': ['réchauffeur', 'réchauffeurs', 'rechauffeur'],
'refroidissement': ['refroidissement', 'refroidisseur', 'refrigerant', 'réfrigérant'], # HIGH RISK
'compresseur': ['compresseur', 'compresseurs'],
'soupape': ['soupape', 'soupapes'],
'décrasseur': ['décrasseur', 'décrasseurs', 'decrasseur'],
'principal': ['principal', 'principale'], # SINGLE CRITICAL
'groupe': ['groupe', 'groupes'], # HIGH RISK
'protection': ['protection', 'protections'],
'armoire': ['armoire', 'armoires'],
'disjoncteur': ['disjoncteur', 'disjoncteurs']
}
# Enhanced problem keywords (from critical case analysis)
problem_keywords = {
'fuite': ['fuite', 'fuites', 'fuit', 'fuyant'],
'vibration': ['vibration', 'vibrations', 'vibre'],
'bruit_anormal': ['bruit anormal', 'bruit anormale'], # SPECIFIC PATTERN
'percement': ['percement', 'percé', 'percée'], # CRITICAL FAILURE
'éclatement': ['éclatement', 'eclatement'], # CRITICAL FAILURE
'fissure': ['fissure', 'fissuré', 'fissures'], # STRUCTURAL FAILURE
'aggravation': ['aggravation'], # ESCALATION INDICATOR
'sifflement': ['sifflement', 'siffler'], # PRESSURE ISSUE
'défaillance': ['défaillance', 'défaillant'],
'dysfonctionnement': ['dysfonctionnement', 'dysfonctionnel'],
'sens_inverse': ['sens inverse', 'sens contraire'], # CRITICAL MALFUNCTION
'détachés': ['détachés', 'détaché', 'detaches'],
'corrosion': ['corrosion', 'corrodé', 'rouille'],
'usure': ['usure', 'usé', 'usée'],
'surchauffe': ['surchauffe', 'surchauffé', 'température élevée', 'temp elevee'],
'blocage': ['blocage', 'bloqué', 'bloque', 'coincé'],
'dégradation': ['dégradation', 'dégradé'],
'obstruction': ['obstruction', 'obstrué', 'bouché', 'bouchage']
}
# Enhanced action keywords
action_keywords = {
'remplacement': ['remplacement', 'remplacer', 'remplacé', 'changement', 'changer'],
'réparation': ['réparation', 'réparer', 'réparé'],
'maintenance': ['maintenance', 'entretien'],
'prévision': ['prévoir', 'prévoire', 'prevoir'], # MAINTENANCE PLANNING
'soufflage': ['soufflage', 'souffler', 'soufflé'],
'nettoyage': ['nettoyage', 'nettoyer', 'nettoyé'],
'débouchage': ['débouchage', 'déboucher'],
'inspection': ['inspection', 'inspecter', 'contrôle', 'contrôler'],
'révision': ['révision', 'réviser'],
'remise_état': ['remise en état', 'remise état']
}
# SAFETY and urgency indicators (enhanced)
urgency_keywords = {
'safety': ['safety', 'sécurité'], # BUT NOT AUTOMATIC HIGH CRITICALITY
'urgent': ['urgent', 'urgence'],
'critique': ['critique', 'critiques'],
'important': ['important', 'importante'],
'immédiat': ['immédiat', 'immédiatement'],
'prioritaire': ['prioritaire', 'priorité'],
'grave': ['grave', 'graves'],
'majeur': ['majeur', 'majeure'],
'dangereux': ['dangereux', 'dangereuse', 'danger'],
'risque': ['risque', 'risques', 'risqué'],
'chute': ['chute', 'tomber'],
'fréquent': ['fréquent', 'fréquente', 'répétitif', 'répétitive']
}
def extract_keywords_dual_field(description, equipment_desc, keyword_dict):
"""Extract keywords from both description and equipment description"""
combined_text = (str(description) + ' ' + str(equipment_desc)).lower()
found_keywords = []
for category, keywords in keyword_dict.items():
for keyword in keywords:
if keyword in combined_text:
found_keywords.append(category)
break
return found_keywords
# Apply enhanced keyword extraction
print("Extracting enhanced keywords from both fields...")
# Equipment mentions (dual-field)
df['equipment_mentioned'] = df.apply(
lambda row: extract_keywords_dual_field(row['Description'], row['Description de l\'équipement'], equipment_keywords),
axis=1
)
df['equipment_count'] = df['equipment_mentioned'].str.len()
# Problem types (dual-field)
df['problem_types'] = df.apply(
lambda row: extract_keywords_dual_field(row['Description'], row['Description de l\'équipement'], problem_keywords),
axis=1
)
df['problem_count'] = df['problem_types'].str.len()
# Actions mentioned (dual-field)
df['actions_mentioned'] = df.apply(
lambda row: extract_keywords_dual_field(row['Description'], row['Description de l\'équipement'], action_keywords),
axis=1
)
df['action_count'] = df['actions_mentioned'].str.len()
# Urgency indicators (dual-field)
df['urgency_indicators'] = df.apply(
lambda row: extract_keywords_dual_field(row['Description'], row['Description de l\'équipement'], urgency_keywords),
axis=1
)
df['has_urgency'] = df['urgency_indicators'].str.len() > 0
print(f"✓ Enhanced keyword extraction completed")
# ============== STEP 5: CRITICAL FAILURE PATTERN DETECTION ==============
print("\n" + "="*50)
print("STEP 5: CRITICAL FAILURE PATTERN DETECTION")
print("="*50)
# Structural failure indicators (highest severity)
df['has_structural_failure'] = df['combined_text_lower'].str.contains(
'percement|éclatement|eclatement|fissure|rupture', regex=True, na=False
).astype(int)
# Equipment malfunction indicators
df['has_equipment_malfunction'] = df['combined_text_lower'].str.contains(
'sens inverse|dysfonctionnement|défaillance|défaut|panne', regex=True, na=False
).astype(int)
# Escalation indicators
df['has_escalation'] = df['combined_text_lower'].str.contains(
'aggravation|empiré|empire', regex=True, na=False
).astype(int)
# Safety indicators (but not automatic high criticality)
df['has_safety_mention'] = df['Description'].str.contains('SAFETY', case=False, na=False).astype(int)
# Specific high-risk combinations (from critical case analysis)
df['electrical_cooling_issue'] = (
(df['equipment_type_class'].isin(['ELECTRICAL_CRITICAL', 'ELECTRICAL_STANDARD'])) &
(df['combined_text_lower'].str.contains('refroidissement|ventilateur|température', regex=True, na=False))
).astype(int)
df['turbine_oil_issue'] = (
(df['equipment_type_class'] == 'TURBINE_SYSTEMS') &
(df['combined_text_lower'].str.contains('huile|fuite|graissage', regex=True, na=False))
).astype(int)
df['main_equipment_failure'] = (
(df['equipment_redundancy_class'] == 'SINGLE_CRITICAL') &
(df['has_structural_failure'] == 1)
).astype(int)
print(f"Critical failure patterns detected:")
print(f"Structural failures: {df['has_structural_failure'].sum()}")
print(f"Equipment malfunctions: {df['has_equipment_malfunction'].sum()}")
print(f"Escalation indicators: {df['has_escalation'].sum()}")
print(f"Electrical cooling issues: {df['electrical_cooling_issue'].sum()}")
print(f"Turbine oil issues: {df['turbine_oil_issue'].sum()}")
print(f"Main equipment failures: {df['main_equipment_failure'].sum()}")
# ============== STEP 6: ENHANCED COMPOUND FEATURES ==============
print("\n" + "="*50)
print("STEP 6: ENHANCED COMPOUND FEATURES")
print("="*50)
# Specific leak types (from original analysis)
df['fuite_vapeur'] = df['combined_text_lower'].str.contains('fuite.*vapeur|vapeur.*fuite', regex=True, na=False).astype(int)
df['fuite_huile'] = df['combined_text_lower'].str.contains('fuite.*huile|huile.*fuite', regex=True, na=False).astype(int)
df['fuite_eau'] = df['combined_text_lower'].str.contains('fuite.*eau|eau.*fuite', regex=True, na=False).astype(int)
# Enhanced vibration/noise detection
df['bruit_anormal'] = df['combined_text_lower'].str.contains('bruit anormal', regex=True, na=False).astype(int)
df['vibration_excessive'] = df['combined_text_lower'].str.contains(
'vibration.*excessive|vibration.*élevée|vibration.*haute', regex=True, na=False
).astype(int)
# Temperature issues
df['temperature_elevee'] = df['combined_text_lower'].str.contains(
'température élevée|temp élevée|temp elevee|surchauffe', regex=True, na=False
).astype(int)
# Maintenance prediction indicators
df['maintenance_planning'] = df['combined_text_lower'].str.contains(
'prévoir|prévoire|planifier|programmer', regex=True, na=False
).astype(int)
# Recurring issue indicators
df['is_recurring'] = df['combined_text_lower'].str.contains(
'fréquent|répétitif|souvent|plusieurs fois|encore', regex=True, na=False
).astype(int)
# Measurements and technical details
df['has_measurements'] = df['combined_text_lower'].str.contains(
r'\d+\s*°c|\d+\s*bar|\d+\s*%|\d+\s*mm|\d+\s*m3', regex=True, na=False
).astype(int)
df['has_equipment_codes'] = df['combined_text_lower'].str.contains(
r'[A-Z0-9]{5,}|[0-9]{2}[A-Z]{3}[0-9]{2}', regex=True, na=False
).astype(int)
# Equipment location indicators
df['has_location_details'] = df['combined_text_lower'].str.contains(
'niveau|angle|côté|coté|palier|entrée|sortie|amont|aval', regex=True, na=False
).astype(int)
# ============== STEP 7: ADVANCED SEVERITY SCORING ==============
print("\n" + "="*50)
print("STEP 7: ADVANCED SEVERITY SCORING")
print("="*50)
# Enhanced severity word scoring (from critical case analysis)
severity_words = {
'critique': 4, 'critiques': 4,
'grave': 4, 'graves': 4,
'majeur': 4, 'majeure': 4,
'important': 3, 'importante': 3,
'total': 5, 'totale': 5,
'complet': 5, 'complète': 5,
'rupture': 5, 'éclatement': 5, 'eclatement': 5,
'percement': 5, 'fissure': 4,
'aggravation': 4,
'sifflement': 3,
'sens inverse': 5,
'dysfonctionnement': 3,
'défaillance': 3,
'urgent': 3, 'urgence': 3,
'immédiat': 3, 'immédiatement': 3,
'dangereux': 4, 'dangereuse': 4,
'léger': 1, 'légère': 1,
'faible': 1, 'petit': 1, 'petite': 1,
'normal': 1, 'normale': 1
}
def calculate_enhanced_severity_score(text):
"""Calculate severity score based on enhanced word analysis"""
text = str(text).lower()
max_score = 0
word_count = 0
for word, weight in severity_words.items():
if word in text:
max_score = max(max_score, weight)
word_count += 1
# Bonus for multiple severity indicators
if word_count > 1:
max_score += 0.5
return max_score
df['enhanced_severity_score'] = df['combined_text_lower'].apply(calculate_enhanced_severity_score)
# Equipment-Problem Risk Matrix
def calculate_equipment_problem_risk(equipment_type, problem_types, has_structural):
"""Calculate compound risk based on equipment type and problem severity"""
base_risk = 1.0
# High-risk equipment gets higher base risk
if equipment_type in ['ELECTRICAL_CRITICAL', 'TURBINE_SYSTEMS', 'COOLING_CRITICAL']:
base_risk = 1.5
elif equipment_type in ['ELECTRICAL_STANDARD', 'HEATING_SYSTEMS']:
base_risk = 1.2
# Structural failure on any equipment is serious
if has_structural:
base_risk *= 2.0
# Specific problem type multipliers
if 'vibration' in problem_types:
base_risk *= 1.3
if 'fuite' in problem_types:
base_risk *= 1.2
if 'bruit_anormal' in problem_types:
base_risk *= 1.2
return min(base_risk, 3.0) # Cap at 3.0
df['equipment_problem_risk'] = df.apply(
lambda row: calculate_equipment_problem_risk(
row['equipment_type_class'],
row['problem_types'],
row['has_structural_failure']
), axis=1
)
# Complexity indicators
df['technical_complexity'] = (
df['combined_word_count'] / 15 + # Normalized word count
df['equipment_count'] +
df['problem_count'] +
df['has_measurements'] +
df['has_equipment_codes'] +
df['has_location_details']
)
print(f"✓ Advanced severity scoring completed")
print(f"Enhanced severity score distribution:")
print(df['enhanced_severity_score'].value_counts().sort_index())
# ============== STEP 8: NOISE-ROBUST LABEL ANALYSIS ==============
print("\n" + "="*50)
print("STEP 8: NOISE-ROBUST LABEL ANALYSIS")
print("="*50)
# Identify potentially noisy labels
def identify_label_inconsistencies(df, similarity_threshold=0.8):
"""Identify potentially inconsistent labels for similar cases"""
# Group by similar characteristics
similar_groups = df.groupby([
'equipment_type_class',
'equipment_redundancy_class',
'Section propriétaire'
])
inconsistent_cases = []
for group_key, group_df in similar_groups:
if len(group_df) >= 3: # Need at least 3 cases to detect outliers
criticality_std = group_df['Criticité'].std()
criticality_mean = group_df['Criticité'].mean()
if criticality_std > 3.0: # High variance in similar cases
for idx, row in group_df.iterrows():
z_score = abs(row['Criticité'] - criticality_mean) / (criticality_std + 0.1)
if z_score > 2.0: # Outlier
inconsistent_cases.append({
'index': idx,
'criticality': row['Criticité'],
'expected_range': f"{criticality_mean-criticality_std:.1f}-{criticality_mean+criticality_std:.1f}",
'z_score': z_score,
'group': group_key
})
return inconsistent_cases
inconsistent_labels = identify_label_inconsistencies(df)
df['potentially_mislabeled'] = 0
if inconsistent_labels:
inconsistent_indices = [case['index'] for case in inconsistent_labels]
df.loc[inconsistent_indices, 'potentially_mislabeled'] = 1
print(f"Identified {len(inconsistent_labels)} potentially inconsistent labels")
print(f"Percentage of potentially noisy labels: {len(inconsistent_labels)/len(df)*100:.2f}%")
# Create label confidence scores
def calculate_label_confidence(row):
"""Calculate confidence in the label based on consistency with similar cases"""
base_confidence = 1.0
# Reduce confidence for outliers
if row['potentially_mislabeled']:
base_confidence *= 0.6
# Increase confidence for cases that align with equipment risk
expected_criticality = row['equipment_risk_score']
actual_criticality = row['Criticité']
# If actual is close to expected, increase confidence
diff = abs(actual_criticality - expected_criticality)
if diff <= 2:
base_confidence *= 1.2
elif diff > 5:
base_confidence *= 0.8
return min(base_confidence, 1.0)
df['label_confidence'] = df.apply(calculate_label_confidence, axis=1)
print(f"Label confidence distribution:")
print(f"High confidence (>0.9): {(df['label_confidence'] > 0.9).sum()}")
print(f"Medium confidence (0.7-0.9): {((df['label_confidence'] > 0.7) & (df['label_confidence'] <= 0.9)).sum()}")
print(f"Low confidence (<0.7): {(df['label_confidence'] <= 0.7).sum()}")
# ============== STEP 9: CORRELATION ANALYSIS ==============
print("\n" + "="*50)
print("STEP 9: ENHANCED FEATURE CORRELATION ANALYSIS")
print("="*50)
# Enhanced feature list
enhanced_features = [
'equipment_risk_score', 'equipment_base_criticality', 'equipment_redundancy_multiplier',
'section_risk_multiplier', 'enhanced_severity_score', 'equipment_problem_risk',
'technical_complexity', 'has_structural_failure', 'has_equipment_malfunction',
'has_escalation', 'electrical_cooling_issue', 'turbine_oil_issue', 'main_equipment_failure',
'combined_word_count', 'equipment_count', 'problem_count', 'action_count',
'has_urgency', 'bruit_anormal', 'vibration_excessive', 'temperature_elevee',
'fuite_vapeur', 'fuite_huile', 'maintenance_planning', 'is_recurring',
'has_measurements', 'has_equipment_codes', 'has_location_details', 'has_safety_mention'
]
target_cols = ['Fiabilité Intégrité', 'Disponibilté', 'Process Safety', 'Criticité']
print("\nTop correlations with Criticité:")
correlations = []
for feature in enhanced_features:
if feature in df.columns:
corr = df[feature].corr(df['Criticité'])
correlations.append({'Feature': feature, 'Correlation': corr})
correlation_df = pd.DataFrame(correlations).sort_values('Correlation', key=abs, ascending=False)
print(correlation_df.head(15).to_string(index=False))
# ============== STEP 10: SAVE ENHANCED DATASET ==============
print("\n" + "="*50)
print("STEP 10: SAVING ENHANCED DATASET")
print("="*50)
# Select final feature columns
final_columns = [
# Original columns
'Num_equipement', 'Systeme', 'Description', 'Date de détéction de l\'anomalie',
'Description de l\'équipement', 'Section propriétaire',
'Fiabilité Intégrité', 'Disponibilté', 'Process Safety', 'Criticité',
# Equipment Intelligence Features
'equipment_type_class', 'equipment_base_criticality', 'equipment_redundancy_class',
'equipment_redundancy_multiplier', 'section_risk_multiplier', 'equipment_risk_score',
# Text Analysis Features
'combined_text', 'description_length', 'description_word_count',
'equipment_desc_length', 'equipment_desc_word_count', 'combined_length', 'combined_word_count',
# Enhanced Keyword Features
'equipment_mentioned', 'equipment_count', 'problem_types', 'problem_count',
'actions_mentioned', 'action_count', 'urgency_indicators', 'has_urgency',
# Critical Failure Features
'has_structural_failure', 'has_equipment_malfunction', 'has_escalation', 'has_safety_mention',
'electrical_cooling_issue', 'turbine_oil_issue', 'main_equipment_failure',
# Compound Features
'fuite_vapeur', 'fuite_huile', 'fuite_eau', 'bruit_anormal', 'vibration_excessive',
'temperature_elevee', 'maintenance_planning', 'is_recurring',
# Technical Features
'has_measurements', 'has_equipment_codes', 'has_location_details',
# Advanced Features
'enhanced_severity_score', 'equipment_problem_risk', 'technical_complexity',
# Noise-Robust Features
'potentially_mislabeled', 'label_confidence'
]
# Ensure all columns exist
available_columns = [col for col in final_columns if col in df.columns]
missing_columns = [col for col in final_columns if col not in df.columns]
if missing_columns:
print(f"Warning: Missing columns: {missing_columns}")
# Save enhanced dataset
enhanced_df = df[available_columns].copy()
enhanced_df.to_csv('enhanced_anomaly_data_v2.csv', index=False, encoding='utf-8')
print(f"✓ Enhanced dataset saved to 'enhanced_anomaly_data_v2.csv'")
print(f"Dataset shape: {enhanced_df.shape}")
print(f"Total features: {len(available_columns)}")
# ============== STEP 11: FEATURE SUMMARY AND RECOMMENDATIONS ==============
print("\n" + "="*50)
print("STEP 11: FEATURE SUMMARY AND RECOMMENDATIONS")
print("="*50)
# Feature importance ranking based on correlations
feature_importance = correlation_df.copy()
feature_importance['Abs_Correlation'] = feature_importance['Correlation'].abs()
feature_importance = feature_importance.sort_values('Abs_Correlation', ascending=False)
print("\n🎯 TOP 10 MOST IMPORTANT FEATURES:")
for i, (_, row) in enumerate(feature_importance.head(10).iterrows(), 1):
print(f"{i:2d}. {row['Feature']:35s}: {row['Correlation']:6.3f}")
# Equipment intelligence summary
print(f"\n🔧 EQUIPMENT INTELLIGENCE SUMMARY:")
print(f"Equipment types classified:")
equipment_type_summary = df['equipment_type_class'].value_counts()
for eq_type, count in equipment_type_summary.items():
avg_crit = df[df['equipment_type_class'] == eq_type]['Criticité'].mean()
print(f" {eq_type:25s}: {count:4d} cases (avg criticality: {avg_crit:.2f})")
print(f"\nRedundancy classification:")
redundancy_summary = df['equipment_redundancy_class'].value_counts()
for red_class, count in redundancy_summary.items():
avg_crit = df[df['equipment_redundancy_class'] == red_class]['Criticité'].mean()
print(f" {red_class:20s}: {count:4d} cases (avg criticality: {avg_crit:.2f})")
# Critical case analysis
critical_cases = df[df['Criticité'] >= 10]
print(f"\n⚠️ CRITICAL CASE ANALYSIS (Criticality >= 10): {len(critical_cases)} cases")
if len(critical_cases) > 0:
print("Equipment types in critical cases:")
crit_equipment = critical_cases['equipment_type_class'].value_counts()
for eq_type, count in crit_equipment.items():
total_type = len(df[df['equipment_type_class'] == eq_type])
percentage = count / total_type * 100
print(f" {eq_type:25s}: {count:2d}/{total_type:3d} cases ({percentage:5.1f}% critical)")
print("\nTop critical failure patterns:")
critical_patterns = {
'Structural Failure': critical_cases['has_structural_failure'].sum(),
'Equipment Malfunction': critical_cases['has_equipment_malfunction'].sum(),
'Escalation': critical_cases['has_escalation'].sum(),
'Electrical Cooling Issue': critical_cases['electrical_cooling_issue'].sum(),
'Turbine Oil Issue': critical_cases['turbine_oil_issue'].sum(),
'Main Equipment Failure': critical_cases['main_equipment_failure'].sum()
}
for pattern, count in sorted(critical_patterns.items(), key=lambda x: x[1], reverse=True):
if count > 0:
percentage = count / len(critical_cases) * 100
print(f" {pattern:25s}: {count:2d} cases ({percentage:5.1f}% of critical)")
# Data quality assessment
print(f"\n📊 DATA QUALITY ASSESSMENT:")
print(f"Total samples: {len(df)}")
print(f"Potentially mislabeled: {df['potentially_mislabeled'].sum()} ({df['potentially_mislabeled'].mean()*100:.1f}%)")
print(f"High confidence labels: {(df['label_confidence'] > 0.9).sum()} ({(df['label_confidence'] > 0.9).mean()*100:.1f}%)")
print(f"Low confidence labels: {(df['label_confidence'] < 0.7).sum()} ({(df['label_confidence'] < 0.7).mean()*100:.1f}%)")
# ============== STEP 12: VISUALIZATION CREATION ==============
print("\n" + "="*50)
print("STEP 12: CREATING ENHANCED VISUALIZATIONS")
print("="*50)
# Create comprehensive visualization
fig = plt.figure(figsize=(20, 16))
# 1. Equipment Risk Score vs Criticality
plt.subplot(3, 4, 1)
plt.scatter(df['equipment_risk_score'], df['Criticité'], alpha=0.6, s=20)
plt.xlabel('Equipment Risk Score')
plt.ylabel('Actual Criticité')
plt.title('Equipment Risk Score vs Actual Criticité')
plt.grid(True, alpha=0.3)
# 2. Equipment Type Distribution
plt.subplot(3, 4, 2)
equipment_counts = df['equipment_type_class'].value_counts()
plt.pie(equipment_counts.values, labels=equipment_counts.index, autopct='%1.1f%%', startangle=90)
plt.title('Equipment Type Distribution')
# 3. Section Risk Analysis
plt.subplot(3, 4, 3)
section_criticality = df.groupby('Section propriétaire')['Criticité'].mean().sort_values(ascending=False)
plt.bar(section_criticality.index, section_criticality.values)
plt.xlabel('Section')
plt.ylabel('Average Criticité')
plt.title('Average Criticality by Section')
plt.xticks(rotation=45)
# 4. Feature Correlation Heatmap
plt.subplot(3, 4, 4)
top_features = feature_importance.head(8)['Feature'].tolist() + ['Criticité']
if len(top_features) > 1:
corr_matrix = df[top_features].corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0, fmt='.2f', cbar_kws={'shrink': 0.8})
plt.title('Top Features Correlation')
# 5. Critical Failure Patterns
plt.subplot(3, 4, 5)
failure_patterns = {
'Structural': df['has_structural_failure'].sum(),
'Malfunction': df['has_equipment_malfunction'].sum(),
'Escalation': df['has_escalation'].sum(),
'Elec-Cooling': df['electrical_cooling_issue'].sum(),
'Turbine-Oil': df['turbine_oil_issue'].sum(),
'Main-Equip': df['main_equipment_failure'].sum()
}
plt.bar(failure_patterns.keys(), failure_patterns.values())
plt.xlabel('Failure Pattern')
plt.ylabel('Count')
plt.title('Critical Failure Pattern Frequency')
plt.xticks(rotation=45)
# 6. Redundancy vs Criticality
plt.subplot(3, 4, 6)
redundancy_crit = df.groupby('equipment_redundancy_class')['Criticité'].mean()
plt.bar(redundancy_crit.index, redundancy_crit.values)
plt.xlabel('Redundancy Class')
plt.ylabel('Average Criticité')
plt.title('Redundancy vs Average Criticality')
plt.xticks(rotation=45)
# 7. Label Confidence Distribution
plt.subplot(3, 4, 7)
plt.hist(df['label_confidence'], bins=20, alpha=0.7, edgecolor='black')
plt.xlabel('Label Confidence')
plt.ylabel('Frequency')
plt.title('Label Confidence Distribution')
plt.grid(True, alpha=0.3)
# 8. Enhanced Severity Score vs Criticality
plt.subplot(3, 4, 8)
plt.scatter(df['enhanced_severity_score'], df['Criticité'], alpha=0.6, s=20)
plt.xlabel('Enhanced Severity Score')
plt.ylabel('Actual Criticité')
plt.title('Severity Score vs Criticality')
plt.grid(True, alpha=0.3)
# 9. Equipment Problem Risk vs Criticality
plt.subplot(3, 4, 9)
plt.scatter(df['equipment_problem_risk'], df['Criticité'], alpha=0.6, s=20)
plt.xlabel('Equipment Problem Risk')
plt.ylabel('Actual Criticité')
plt.title('Equipment-Problem Risk vs Criticality')
plt.grid(True, alpha=0.3)
# 10. Critical Cases by Equipment Type
plt.subplot(3, 4, 10)
if len(critical_cases) > 0:
crit_eq_counts = critical_cases['equipment_type_class'].value_counts()
plt.barh(range(len(crit_eq_counts)), crit_eq_counts.values)
plt.yticks(range(len(crit_eq_counts)), crit_eq_counts.index)
plt.xlabel('Count')
plt.title('Critical Cases by Equipment Type')
# 11. Technical Complexity Distribution
plt.subplot(3, 4, 11)
plt.hist(df['technical_complexity'], bins=30, alpha=0.7, edgecolor='black')
plt.xlabel('Technical Complexity Score')
plt.ylabel('Frequency')
plt.title('Technical Complexity Distribution')
plt.grid(True, alpha=0.3)
# 12. Monthly Trend Analysis
plt.subplot(3, 4, 12)
df['Month'] = df['Date de détéction de l\'anomalie'].dt.month
monthly_criticality = df.groupby('Month')['Criticité'].mean()
plt.plot(monthly_criticality.index, monthly_criticality.values, 'b-o', linewidth=2, markersize=6)
plt.xlabel('Month')
plt.ylabel('Average Criticité')
plt.title('Monthly Criticality Trend')
plt.grid(True, alpha=0.3)
plt.xticks(range(1, 13))
plt.tight_layout()
plt.savefig('enhanced_analysis_dashboard_v2.png', dpi=300, bbox_inches='tight')
print("✓ Enhanced analysis dashboard saved as 'enhanced_analysis_dashboard_v2.png'")
# ============== STEP 13: TRAINING RECOMMENDATIONS ==============
print("\n" + "="*50)
print("STEP 13: TRAINING RECOMMENDATIONS")
print("="*50)
print("🚀 ENHANCED MODEL TRAINING RECOMMENDATIONS:")
print("\n1. FEATURE SELECTION:")
print(" Prioritize features with |correlation| > 0.15:")
high_impact_features = feature_importance[feature_importance['Abs_Correlation'] > 0.15]['Feature'].tolist()
for i, feature in enumerate(high_impact_features, 1):
corr = feature_importance[feature_importance['Feature'] == feature]['Correlation'].iloc[0]
print(f" {i:2d}. {feature:35s} (r={corr:6.3f})")
print(f"\n2. NOISE-ROBUST TRAINING:")
print(f" - Use sample weighting based on 'label_confidence'")
print(f" - Apply higher weights to high-confidence samples")
print(f" - Consider excluding or down-weighting {df['potentially_mislabeled'].sum()} potentially mislabeled cases")
print(f"\n3. CLASS IMBALANCE HANDLING:")
print(f" - Focus SMOTE on high-criticality cases (>= 10)")
print(f" - Use cost-sensitive learning with heavy penalty for missing critical cases")
print(f" - Implement stratified sampling by equipment_type_class")
print(f"\n4. FEATURE ENGINEERING PRIORITIES:")
print(f" - Equipment intelligence features show strong correlation")
print(f" - Structural failure indicators are crucial for critical cases")
print(f" - Section-equipment interactions provide additional signal")
print(f"\n5. MODEL ARCHITECTURE SUGGESTIONS:")
print(f" - Use ensemble with equipment-type-specific models")
print(f" - Implement conservative prediction thresholds for ELECTRICAL_CRITICAL equipment")
print(f" - Add safety override rules for has_structural_failure = 1")
# Save feature metadata for training
feature_metadata = {
'high_impact_features': high_impact_features,
'equipment_type_classes': df['equipment_type_class'].unique().tolist(),
'redundancy_classes': df['equipment_redundancy_class'].unique().tolist(),
'section_risk_multipliers': SECTION_RISK_MULTIPLIERS,
'equipment_type_scores': EQUIPMENT_TYPE_SCORES,
'feature_correlations': [
{'Feature': row['Feature'], 'Correlation': float(row['Correlation'])}
for _, row in correlation_df.iterrows()
],
'data_quality_metrics': {
'total_samples': int(len(df)),
'potentially_mislabeled': int(df['potentially_mislabeled'].sum()),
'high_confidence_samples': int((df['label_confidence'] > 0.9).sum()),
'critical_cases': int(len(critical_cases)),
'structural_failures': int(df['has_structural_failure'].sum())
}
}
import json
with open('enhanced_feature_metadata_v2.json', 'w') as f:
json.dump(feature_metadata, f, indent=2)
print(f"\n✓ Feature metadata saved to 'enhanced_feature_metadata_v2.json'")
# ============== FINAL SUMMARY ==============
print("\n" + "="*70)
print("ENHANCED DATA PROCESSING v2.0 COMPLETED!")
print("="*70)
print(f"\n📈 ACHIEVEMENTS:")
print(f"✓ Equipment Intelligence Classification: {len(EQUIPMENT_TYPE_SCORES)} equipment categories")
print(f"✓ Redundancy Detection: {len(REDUNDANCY_PATTERNS)} redundancy patterns")
print(f"✓ Dual-Field Text Analysis: Description + Equipment Description")
print(f"✓ Critical Failure Pattern Detection: {len(critical_patterns)} pattern types")
print(f"✓ Noise-Robust Label Analysis: Confidence scoring implemented")
print(f"✓ Enhanced Feature Engineering: {len(available_columns)} total features")
print(f"\n📊 DATASET ENHANCEMENT:")
print(f"Original features: 10")
print(f"Enhanced features: {len(available_columns)}")
print(f"Feature improvement: {(len(available_columns)/10-1)*100:.0f}% increase")
print(f"\n🎯 KEY INSIGHTS FOR MODEL:")
print(f"1. Equipment type is strongest predictor of criticality")
print(f"2. Structural failures require immediate attention regardless of equipment")
print(f"3. Electrical equipment (34EL) has highest critical case rate")
print(f"4. Label confidence varies significantly - use for robust training")
print(f"5. Equipment redundancy affects criticality but not as strongly as type")
print(f"\n📁 FILES GENERATED:")
print(f"✓ enhanced_anomaly_data_v2.csv - Enhanced dataset")
print(f"✓ enhanced_feature_metadata_v2.json - Feature metadata for training")
print(f"✓ enhanced_analysis_dashboard_v2.png - Comprehensive visualizations")
print(f"\n🚀 READY FOR ENHANCED MODEL TRAINING!")
print(f"The enhanced dataset now includes equipment intelligence that should")
print(f"significantly improve high-criticality case detection.")
print("="*70)