hackaton / anomaly_intelligence.py
bneay's picture
py scripts
4256453
# enhanced_anomaly_intelligence_v2.py
# TAQATHON 2025 - Production Anomaly Intelligence with Equipment Intelligence
# Enhanced for single and batch processing with safety override rules
import pandas as pd
import numpy as np
import joblib
import json
import re
from datetime import datetime
from sklearn.metrics.pairwise import cosine_similarity
import warnings
from typing import Union, List, Dict, Any
import time
warnings.filterwarnings('ignore')
class EnhancedAnomalyIntelligence:
"""
Enhanced Production-ready Anomaly Intelligence System v2.0
Features: Equipment Intelligence + Safety Override Rules + Conservative Prediction
"""
def __init__(self):
self.models = {}
self.model_metadata = None
self.safety_rules = None
self.embeddings = None
self.embedding_metadata = None
self.sentence_model = None
self._models_loaded = False
# Equipment intelligence configuration
self.equipment_type_scores = {}
self.section_risk_multipliers = {}
def _load_models(self):
"""Load all enhanced models and metadata (called once)"""
if self._models_loaded:
return
print("Loading enhanced models and metadata...")
try:
# Load enhanced model metadata
self.model_metadata = joblib.load('enhanced_model_metadata_v2.joblib')
target_columns = self.model_metadata['target_columns']
# Load enhanced trained models
for target in target_columns:
model_filename = f"enhanced_model_{target.replace(' ', '_').replace('é', 'e')}_v2.joblib"
self.models[target] = joblib.load(model_filename)
print(f"✓ Loaded {target} model")
# Load safety override rules
try:
with open('safety_override_rules_v2.json', 'r') as f:
self.safety_rules = json.load(f)
print("✓ Loaded safety override rules")
except FileNotFoundError:
print("⚠️ Warning: safety_override_rules_v2.json not found - safety rules disabled")
self.safety_rules = {}
# Load embeddings and metadata for similarity search
try:
self.embeddings = np.load('anomaly_embeddings.npy')
self.embedding_metadata = joblib.load('embedding_metadata.joblib')
print("✓ Loaded similarity search embeddings")
except FileNotFoundError:
print("⚠️ Warning: Embedding files not found - similarity search disabled")
self.embeddings = None
self.embedding_metadata = None
# Load sentence transformer
try:
from sentence_transformers import SentenceTransformer
try:
self.sentence_model = SentenceTransformer('dangvantuan/sentence-camembert-large')
print("✓ Loaded French CamemBERT model")
except:
try:
self.sentence_model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
print("✓ Loaded multilingual model")
except:
self.sentence_model = SentenceTransformer('distiluse-base-multilingual-cased')
print("✓ Loaded basic multilingual model")
except Exception as e:
print(f"⚠️ Warning: Could not load sentence transformer: {e}")
self.sentence_model = None
# Extract equipment intelligence configuration
if 'training_config' in self.model_metadata:
training_config = self.model_metadata['training_config']
print("✓ Loaded training configuration")
self._models_loaded = True
print("✓ All enhanced models loaded successfully")
except Exception as e:
raise Exception(f"Failed to load enhanced models: {str(e)}")
def predict_single(self, anomaly_data: Dict,
confidence_threshold: float = 0.7,
include_similar: bool = True,
format_type: str = 'rich',
apply_safety_rules: bool = True) -> Dict:
"""
Enhanced single anomaly prediction with equipment intelligence and safety rules
Args:
anomaly_data: Dictionary with anomaly information
confidence_threshold: Threshold for flagging manual review
include_similar: Whether to include similar anomalies
format_type: 'rich' for UI, 'simple' for database
apply_safety_rules: Whether to apply safety override rules
"""
self._load_models()
try:
# Extract and prepare enhanced features
enhanced_features = self._extract_enhanced_features_single(anomaly_data)
# Make base predictions
predictions, confidences, probabilities = self._predict_criticality(enhanced_features)
# Apply safety override rules if enabled
if apply_safety_rules and self.safety_rules:
predictions = self._apply_safety_override_rules(enhanced_features, predictions)
# Calculate enhanced metrics
total_criticality = sum(predictions.values())
overall_confidence = np.mean(list(confidences.values()))
# Enhanced business logic for manual review
needs_review = self._determine_manual_review_need(
enhanced_features, predictions, overall_confidence, confidence_threshold
)
# Equipment-specific risk assessment
equipment_risk_assessment = self._assess_equipment_risk(enhanced_features, predictions)
# Find similar anomalies
similar_anomalies = []
if include_similar and self.sentence_model is not None:
similar_anomalies = self._find_similar_anomalies(
anomaly_data.get('Description', ''), top_k=3
)
# Format response based on type
if format_type == 'simple':
return self._format_simple_response(
anomaly_data, predictions, total_criticality,
overall_confidence, needs_review, equipment_risk_assessment
)
else:
return self._format_rich_response(
anomaly_data, predictions, confidences,
total_criticality, overall_confidence,
similar_anomalies, needs_review, confidence_threshold,
equipment_risk_assessment, enhanced_features
)
except Exception as e:
return {
'error': f'Enhanced prediction failed: {str(e)}',
'timestamp': datetime.now().isoformat(),
'input_description': anomaly_data.get('Description', 'N/A')
}
def predict_batch(self, anomaly_list: List[Dict],
confidence_threshold: float = 0.7,
include_similar: bool = False,
format_type: str = 'simple',
apply_safety_rules: bool = True) -> List[Dict]:
"""
Enhanced batch prediction with equipment intelligence
Args:
anomaly_list: List of anomaly dictionaries
confidence_threshold: Threshold for flagging manual review
include_similar: Whether to include similar anomalies (slower for batch)
format_type: 'rich' for UI, 'simple' for database
apply_safety_rules: Whether to apply safety override rules
"""
self._load_models()
print(f"Processing enhanced batch of {len(anomaly_list)} anomalies...")
start_time = time.time()
results = []
try:
# Extract enhanced features for all anomalies
all_features = []
for anomaly_data in anomaly_list:
enhanced_features = self._extract_enhanced_features_single(anomaly_data)
all_features.append(enhanced_features)
# Create batch DataFrame with all enhanced features
batch_df = pd.DataFrame(all_features)
# Make batch predictions
batch_predictions = {}
batch_confidences = {}
target_columns = self.model_metadata['target_columns']
for target in target_columns:
model = self.models[target]
preds = model.predict(batch_df)
probas = model.predict_proba(batch_df)
confs = np.max(probas, axis=1)
batch_predictions[target] = preds
batch_confidences[target] = confs
# Process results with enhanced logic
for i, anomaly_data in enumerate(anomaly_list):
# Get base predictions
predictions = {target: int(batch_predictions[target][i])
for target in target_columns}
confidences = {target: float(batch_confidences[target][i])
for target in target_columns}
enhanced_features = all_features[i]
# Apply safety override rules if enabled
if apply_safety_rules and self.safety_rules:
predictions = self._apply_safety_override_rules(enhanced_features, predictions)
total_criticality = sum(predictions.values())
overall_confidence = np.mean(list(confidences.values()))
# Enhanced business logic
needs_review = self._determine_manual_review_need(
enhanced_features, predictions, overall_confidence, confidence_threshold
)
equipment_risk_assessment = self._assess_equipment_risk(enhanced_features, predictions)
# Find similar anomalies (optional for batch)
similar_anomalies = []
if include_similar and self.sentence_model is not None:
similar_anomalies = self._find_similar_anomalies(
anomaly_data.get('Description', ''), top_k=2
)
# Format response
if format_type == 'simple':
result = self._format_simple_response(
anomaly_data, predictions, total_criticality,
overall_confidence, needs_review, equipment_risk_assessment
)
else:
result = self._format_rich_response(
anomaly_data, predictions, confidences,
total_criticality, overall_confidence,
similar_anomalies, needs_review, confidence_threshold,
equipment_risk_assessment, enhanced_features
)
results.append(result)
processing_time = time.time() - start_time
print(f"✓ Enhanced batch processing completed in {processing_time:.2f}s")
print(f" Average time per anomaly: {processing_time/len(anomaly_list):.3f}s")
flagged_count = sum(1 for r in results if r.get('needs_manual_review', False))
safety_overrides = sum(1 for r in results if r.get('safety_override_applied', False))
print(f" Flagged for manual review: {flagged_count}/{len(anomaly_list)} ({flagged_count/len(anomaly_list)*100:.1f}%)")
print(f" Safety overrides applied: {safety_overrides}/{len(anomaly_list)} ({safety_overrides/len(anomaly_list)*100:.1f}%)")
return results
except Exception as e:
# Return error for all items in batch
error_result = {
'error': f'Enhanced batch prediction failed: {str(e)}',
'timestamp': datetime.now().isoformat()
}
return [error_result] * len(anomaly_list)
def _extract_enhanced_features_single(self, anomaly_data: Dict) -> Dict:
"""Extract enhanced features including equipment intelligence"""
# Create temporary DataFrame for feature engineering
temp_df = pd.DataFrame([anomaly_data])
# Apply enhanced feature engineering (matching training pipeline)
enhanced_features = self._extract_enhanced_features(temp_df)
# Prepare feature dict with all required features
feature_columns = self.model_metadata.get('all_feature_columns', [])
input_data = {}
# Text feature
input_data['Description'] = anomaly_data.get('Description', '')
# Enhanced numerical features
numerical_features = self.model_metadata.get('numerical_features', [])
for feat in numerical_features:
if feat in enhanced_features.columns:
value = enhanced_features[feat].iloc[0]
# Ensure proper type conversion
if pd.isna(value):
input_data[feat] = 0.0
elif isinstance(value, (bool, np.bool_)):
input_data[feat] = float(value)
else:
input_data[feat] = float(value)
else:
input_data[feat] = 0.0
# Categorical features
categorical_features = self.model_metadata.get('categorical_features', [])
for feat in categorical_features:
input_data[feat] = anomaly_data.get(feat, 'Unknown')
return input_data
def _extract_enhanced_features(self, df):
"""Extract enhanced features (matching training pipeline logic)"""
import re
features_df = df.copy()
# Create combined text field
features_df['combined_text'] = features_df['Description'].fillna('') + ' ' + features_df.get('Description de l\'équipement', '').fillna('')
features_df['combined_text_lower'] = features_df['combined_text'].str.lower()
# Basic text features
features_df['description_length'] = features_df['Description'].str.len()
features_df['description_word_count'] = features_df['Description'].str.split().str.len()
features_df['equipment_desc_length'] = features_df.get('Description de l\'équipement', '').str.len()
features_df['equipment_desc_word_count'] = features_df.get('Description de l\'équipement', '').str.split().str.len()
features_df['combined_length'] = features_df['combined_text'].str.len()
features_df['combined_word_count'] = features_df['combined_text'].str.split().str.len()
# Equipment intelligence classification
def classify_equipment_type(equipment_desc):
"""Classify equipment based on training analysis"""
equipment_upper = str(equipment_desc).upper()
# Equipment type scoring (from training pipeline)
if any(keyword in equipment_upper for keyword in ['ALTERNATEUR', 'TRANSFO PRINCIPAL', 'PROTECTION ALTERNATEUR']):
return 'ELECTRICAL_CRITICAL', 8.0
elif any(keyword in equipment_upper for keyword in ['VENTILATEUR DE REFROIDISSEMENT', 'REFROIDISSEMENT TP', 'MOTEUR VENTILATEUR DE REFROIDISSEMENT']):
return 'COOLING_CRITICAL', 7.5
elif any(keyword in equipment_upper for keyword in ['TURBINE', 'SOUPAPE REGULATRICE', 'REFRIGERANT HUILE', 'POMPE DE SOULÈVEMENT']):
return 'TURBINE_SYSTEMS', 7.5
elif any(keyword in equipment_upper for keyword in ['DISJONCTEUR', 'TRANSFORMATEUR', 'MOTEUR', 'ARMOIRE', 'GROUPE']):
return 'ELECTRICAL_STANDARD', 6.5
elif any(keyword in equipment_upper for keyword in ['RECHAUFFEUR', 'RÉCHAUFFEUR', 'CHAUDIERE', 'CHAUDIÈRE']):
return 'HEATING_SYSTEMS', 6.5
elif any(keyword in equipment_upper for keyword in ['VENTILATEUR', 'TIRAGE', 'SOUFFLAGE', 'AIR PRIMAIRE', 'AIR SECONDAIRE']):
return 'VENTILATION_SYSTEMS', 6.0
elif any(keyword in equipment_upper for keyword in ['POMPE', 'SOUPAPE', 'VANNE', 'CONVOYEUR', 'BROYEUR', 'COAL FEEDER']):
return 'PROCESS_SYSTEMS', 5.5
elif any(keyword in equipment_upper for keyword in ['DECRASSEUR', 'DÉGRILLEUR', 'FILTRE', 'CAPTEUR', 'TRANSMETTEUR']):
return 'AUXILIARY_SYSTEMS', 5.0
else:
return 'UNKNOWN', 4.5
def detect_equipment_redundancy(equipment_desc):
"""Detect equipment redundancy based on naming patterns"""
equipment_upper = str(equipment_desc).upper()
if any(pattern in equipment_upper for pattern in ['PRINCIPAL', 'UNIQUE']):
return 'SINGLE_CRITICAL', 1.3
elif any(re.search(pattern, equipment_upper) for pattern in [r'\b[AB]$', r'N°[12]$', r'PRIMAIRE$', r'SECONDAIRE$']):
return 'DUAL_SYSTEM', 1.0
elif any(re.search(pattern, equipment_upper) for pattern in [r'N°[3-9]$', r'N°[0-9][0-9]$']):
return 'MULTIPLE_SYSTEM', 0.8
else:
return 'UNKNOWN_REDUNDANCY', 1.0
# Apply equipment intelligence
if 'Description de l\'équipement' in features_df.columns:
equipment_classifications = features_df['Description de l\'équipement'].apply(classify_equipment_type)
features_df['equipment_type_class'] = [x[0] for x in equipment_classifications]
features_df['equipment_base_criticality'] = [x[1] for x in equipment_classifications]
redundancy_classifications = features_df['Description de l\'équipement'].apply(detect_equipment_redundancy)
features_df['equipment_redundancy_class'] = [x[0] for x in redundancy_classifications]
features_df['equipment_redundancy_multiplier'] = [x[1] for x in redundancy_classifications]
else:
features_df['equipment_type_class'] = 'UNKNOWN'
features_df['equipment_base_criticality'] = 4.5
features_df['equipment_redundancy_class'] = 'UNKNOWN_REDUNDANCY'
features_df['equipment_redundancy_multiplier'] = 1.0
# Section risk multiplier
section_risk_multipliers = {'34EL': 1.2, '34MM': 1.1, '34MD': 1.1, '34MC': 1.0, '34CT': 1.0}
features_df['section_risk_multiplier'] = features_df.get('Section propriétaire', '').map(section_risk_multipliers).fillna(1.0)
# Combined equipment risk score
features_df['equipment_risk_score'] = (features_df['equipment_base_criticality'] *
features_df['equipment_redundancy_multiplier'] *
features_df['section_risk_multiplier'])
# Enhanced keyword extraction
def extract_keywords_dual_field(description, equipment_desc, keyword_dict):
"""Extract keywords from both description and equipment description"""
combined_text = (str(description) + ' ' + str(equipment_desc)).lower()
found_keywords = []
for category, keywords in keyword_dict.items():
for keyword in keywords:
if keyword in combined_text:
found_keywords.append(category)
break
return found_keywords
# Keyword dictionaries (from training pipeline)
equipment_keywords = {
'pompe': ['pompe', 'pompes'],
'vanne': ['vanne', 'vannes'],
'ventilateur': ['ventilateur', 'ventilateurs', 'ventilo'],
'moteur': ['moteur', 'moteurs', 'moto'],
'alternateur': ['alternateur', 'alternateurs'],
'transformateur': ['transformateur', 'transformateurs', 'transfo'],
'turbine': ['turbine', 'turbines'],
'principal': ['principal', 'principale'],
'groupe': ['groupe', 'groupes']
}
problem_keywords = {
'fuite': ['fuite', 'fuites', 'fuit', 'fuyant'],
'vibration': ['vibration', 'vibrations', 'vibre'],
'bruit_anormal': ['bruit anormal', 'bruit anormale'],
'percement': ['percement', 'percé', 'percée'],
'éclatement': ['éclatement', 'eclatement'],
'fissure': ['fissure', 'fissuré', 'fissures'],
'aggravation': ['aggravation'],
'sifflement': ['sifflement', 'siffler'],
'défaillance': ['défaillance', 'défaillant'],
'dysfonctionnement': ['dysfonctionnement', 'dysfonctionnel'],
'sens_inverse': ['sens inverse', 'sens contraire'],
'surchauffe': ['surchauffe', 'surchauffé', 'température élevée', 'temp elevee']
}
action_keywords = {
'maintenance': ['maintenance', 'entretien'],
'prévision': ['prévoir', 'prévoire', 'prevoir'],
'remplacement': ['remplacement', 'remplacer', 'remplacé']
}
urgency_keywords = {
'safety': ['safety', 'sécurité'],
'urgent': ['urgent', 'urgence'],
'critique': ['critique', 'critiques'],
'important': ['important', 'importante']
}
# Apply keyword extraction
description_col = features_df['Description']
equipment_col = features_df.get('Description de l\'équipement', '')
features_df['equipment_mentioned'] = features_df.apply(
lambda row: extract_keywords_dual_field(row['Description'], row.get('Description de l\'équipement', ''), equipment_keywords),
axis=1
)
features_df['equipment_count'] = features_df['equipment_mentioned'].str.len()
features_df['problem_types'] = features_df.apply(
lambda row: extract_keywords_dual_field(row['Description'], row.get('Description de l\'équipement', ''), problem_keywords),
axis=1
)
features_df['problem_count'] = features_df['problem_types'].str.len()
features_df['actions_mentioned'] = features_df.apply(
lambda row: extract_keywords_dual_field(row['Description'], row.get('Description de l\'équipement', ''), action_keywords),
axis=1
)
features_df['action_count'] = features_df['actions_mentioned'].str.len()
features_df['urgency_indicators'] = features_df.apply(
lambda row: extract_keywords_dual_field(row['Description'], row.get('Description de l\'équipement', ''), urgency_keywords),
axis=1
)
features_df['has_urgency'] = (features_df['urgency_indicators'].str.len() > 0).astype(int)
# Critical failure pattern detection
features_df['has_structural_failure'] = features_df['combined_text_lower'].str.contains(
'percement|éclatement|eclatement|fissure|rupture', regex=True, na=False
).astype(int)
features_df['has_equipment_malfunction'] = features_df['combined_text_lower'].str.contains(
'sens inverse|dysfonctionnement|défaillance|défaut|panne', regex=True, na=False
).astype(int)
features_df['has_escalation'] = features_df['combined_text_lower'].str.contains(
'aggravation|empiré|empire', regex=True, na=False
).astype(int)
features_df['has_safety_mention'] = features_df['Description'].str.contains('SAFETY', case=False, na=False).astype(int)
# Specific high-risk combinations
features_df['electrical_cooling_issue'] = (
(features_df['equipment_type_class'].isin(['ELECTRICAL_CRITICAL', 'ELECTRICAL_STANDARD'])) &
(features_df['combined_text_lower'].str.contains('refroidissement|ventilateur|température', regex=True, na=False))
).astype(int)
features_df['turbine_oil_issue'] = (
(features_df['equipment_type_class'] == 'TURBINE_SYSTEMS') &
(features_df['combined_text_lower'].str.contains('huile|fuite|graissage', regex=True, na=False))
).astype(int)
features_df['main_equipment_failure'] = (
(features_df['equipment_redundancy_class'] == 'SINGLE_CRITICAL') &
(features_df['has_structural_failure'] == 1)
).astype(int)
# Enhanced compound features
features_df['fuite_vapeur'] = features_df['combined_text_lower'].str.contains('fuite.*vapeur|vapeur.*fuite', regex=True, na=False).astype(int)
features_df['fuite_huile'] = features_df['combined_text_lower'].str.contains('fuite.*huile|huile.*fuite', regex=True, na=False).astype(int)
features_df['fuite_eau'] = features_df['combined_text_lower'].str.contains('fuite.*eau|eau.*fuite', regex=True, na=False).astype(int)
features_df['bruit_anormal'] = features_df['combined_text_lower'].str.contains('bruit anormal', regex=True, na=False).astype(int)
features_df['vibration_excessive'] = features_df['combined_text_lower'].str.contains('vibration.*excessive|vibration.*élevée', regex=True, na=False).astype(int)
features_df['temperature_elevee'] = features_df['combined_text_lower'].str.contains('température élevée|temp élevée|temp elevee', regex=True, na=False).astype(int)
features_df['maintenance_planning'] = features_df['combined_text_lower'].str.contains('prévoir|prévoire|planifier', regex=True, na=False).astype(int)
features_df['is_recurring'] = features_df['combined_text_lower'].str.contains('fréquent|répétitif|souvent', regex=True, na=False).astype(int)
# Technical features
features_df['has_measurements'] = features_df['combined_text_lower'].str.contains(r'\d+\s*°c|\d+\s*bar|\d+\s*%', regex=True, na=False).astype(int)
features_df['has_equipment_codes'] = features_df['combined_text_lower'].str.contains(r'[A-Z0-9]{5,}', regex=True, na=False).astype(int)
features_df['has_location_details'] = features_df['combined_text_lower'].str.contains('niveau|angle|côté|palier', regex=True, na=False).astype(int)
# Enhanced severity scoring
severity_words = {
'critique': 4, 'grave': 4, 'majeur': 4, 'important': 3,
'total': 5, 'complet': 5, 'rupture': 5, 'éclatement': 5,
'percement': 5, 'fissure': 4, 'aggravation': 4, 'urgent': 3
}
def calculate_enhanced_severity_score(text):
text = str(text).lower()
max_score = 0
for word, weight in severity_words.items():
if word in text:
max_score = max(max_score, weight)
return max_score
features_df['enhanced_severity_score'] = features_df['combined_text_lower'].apply(calculate_enhanced_severity_score)
# Equipment-Problem Risk Matrix
def calculate_equipment_problem_risk(equipment_type, problem_types, has_structural):
base_risk = 1.0
if equipment_type in ['ELECTRICAL_CRITICAL', 'TURBINE_SYSTEMS', 'COOLING_CRITICAL']:
base_risk = 1.5
elif equipment_type in ['ELECTRICAL_STANDARD', 'HEATING_SYSTEMS']:
base_risk = 1.2
if has_structural:
base_risk *= 2.0
if 'vibration' in problem_types:
base_risk *= 1.3
if 'fuite' in problem_types:
base_risk *= 1.2
return min(base_risk, 3.0)
features_df['equipment_problem_risk'] = features_df.apply(
lambda row: calculate_equipment_problem_risk(
row['equipment_type_class'],
row['problem_types'],
row['has_structural_failure']
), axis=1
)
# Technical complexity
features_df['technical_complexity'] = (
features_df['combined_word_count'] / 15 +
features_df['equipment_count'] +
features_df['problem_count'] +
features_df['has_measurements'] +
features_df['has_equipment_codes'] +
features_df['has_location_details']
)
# Fill missing values and ensure proper types
numeric_columns = features_df.select_dtypes(include=[np.number]).columns
features_df[numeric_columns] = features_df[numeric_columns].fillna(0)
for col in features_df.select_dtypes(include=[np.integer, np.floating, bool]).columns:
features_df[col] = pd.to_numeric(features_df[col], errors='coerce').fillna(0)
return features_df
def _predict_criticality(self, input_data: Dict) -> tuple:
"""Make criticality predictions using enhanced models"""
# Convert to DataFrame
input_df = pd.DataFrame([input_data])
target_columns = self.model_metadata['target_columns']
predictions = {}
confidences = {}
probabilities = {}
for target in target_columns:
model = self.models[target]
pred = model.predict(input_df)[0]
pred_proba = model.predict_proba(input_df)[0]
confidence = np.max(pred_proba)
predictions[target] = int(pred)
confidences[target] = float(confidence)
probabilities[target] = [float(x) for x in pred_proba]
return predictions, confidences, probabilities
def _apply_safety_override_rules(self, enhanced_features: Dict, predictions: Dict) -> Dict:
"""Apply safety override rules to predictions"""
def _apply_safety_override_rules(self, enhanced_features: Dict, predictions: Dict) -> Dict:
"""Apply safety override rules to predictions"""
if not self.safety_rules:
return predictions
modified_predictions = predictions.copy()
safety_override_applied = False
# Rule 1: Structural failure override
if enhanced_features.get('has_structural_failure', 0) == 1:
# Ensure minimum criticality of 9 for structural failures
total_current = sum(modified_predictions.values())
if total_current < 9:
# Boost Process Safety to 5 first (most critical for structural failures)
if modified_predictions['Process Safety'] < 5:
modified_predictions['Process Safety'] = 5
safety_override_applied = True
# Then boost Fiabilité if still needed
total_after_safety = sum(modified_predictions.values())
if total_after_safety < 9:
needed_boost = 9 - total_after_safety
new_fiabilite = min(5, modified_predictions['Fiabilité Intégrité'] + needed_boost)
modified_predictions['Fiabilité Intégrité'] = new_fiabilite
safety_override_applied = True
# Rule 2: Cooling critical equipment override
if enhanced_features.get('equipment_type_class', '') == 'COOLING_CRITICAL':
# Ensure minimum criticality of 10 for cooling critical equipment
total_current = sum(modified_predictions.values())
if total_current < 10:
# Boost all components proportionally
needed_boost = 10 - total_current
for component in modified_predictions:
if modified_predictions[component] < 5:
boost = min(2, needed_boost // 3 + 1)
modified_predictions[component] = min(5, modified_predictions[component] + boost)
needed_boost -= boost
safety_override_applied = True
if needed_boost <= 0:
break
# Rule 3: Safety mention boost
if enhanced_features.get('has_safety_mention', 0) == 1:
# Add +2 to Process Safety for safety mentions
if modified_predictions['Process Safety'] < 5:
boost = min(2, 5 - modified_predictions['Process Safety'])
modified_predictions['Process Safety'] += boost
safety_override_applied = True
# Rule 4: Turbine oil issue override
if enhanced_features.get('turbine_oil_issue', 0) == 1:
# Ensure minimum criticality of 8 for turbine oil issues
total_current = sum(modified_predictions.values())
if total_current < 8:
# Boost Fiabilité and Disponibilité (oil issues affect both)
needed_boost = 8 - total_current
for component in ['Fiabilité Intégrité', 'Disponibilté']:
if needed_boost > 0 and modified_predictions[component] < 4:
boost = min(2, needed_boost)
modified_predictions[component] = min(5, modified_predictions[component] + boost)
needed_boost -= boost
safety_override_applied = True
# Rule 5: Electrical critical equipment override
if enhanced_features.get('equipment_type_class', '') == 'ELECTRICAL_CRITICAL':
# Conservative boost for electrical critical equipment
for component in modified_predictions:
if modified_predictions[component] >= 3: # Only boost already elevated predictions
boost = min(1, 5 - modified_predictions[component])
if boost > 0:
modified_predictions[component] += boost
safety_override_applied = True
return modified_predictions
def _determine_manual_review_need(self, enhanced_features: Dict, predictions: Dict,
overall_confidence: float, confidence_threshold: float) -> bool:
"""Enhanced logic to determine if manual review is needed"""
# Base confidence check
if overall_confidence < confidence_threshold:
return True
# Critical equipment always needs review for high predictions
if enhanced_features.get('equipment_type_class', '') in ['ELECTRICAL_CRITICAL', 'COOLING_CRITICAL', 'TURBINE_SYSTEMS']:
if sum(predictions.values()) >= 8:
return True
# Structural failures always need review
if enhanced_features.get('has_structural_failure', 0) == 1:
return True
# Safety mentions need review
if enhanced_features.get('has_safety_mention', 0) == 1:
return True
# High criticality cases need review
if sum(predictions.values()) >= 10:
return True
# Equipment malfunction with high-risk equipment
if (enhanced_features.get('has_equipment_malfunction', 0) == 1 and
enhanced_features.get('equipment_type_class', '') in ['ELECTRICAL_CRITICAL', 'TURBINE_SYSTEMS']):
return True
return False
def _assess_equipment_risk(self, enhanced_features: Dict, predictions: Dict) -> Dict:
"""Assess equipment-specific risk factors"""
equipment_type = enhanced_features.get('equipment_type_class', 'UNKNOWN')
total_criticality = sum(predictions.values())
risk_assessment = {
'equipment_type': equipment_type,
'redundancy_class': enhanced_features.get('equipment_redundancy_class', 'UNKNOWN'),
'base_risk_score': enhanced_features.get('equipment_risk_score', 4.5),
'risk_level': 'LOW',
'risk_factors': [],
'business_impact': 'MINOR'
}
# Determine risk level based on equipment type and criticality
if equipment_type == 'COOLING_CRITICAL':
risk_assessment['risk_level'] = 'CRITICAL'
risk_assessment['business_impact'] = 'SEVERE'
risk_assessment['risk_factors'].append('Critical cooling system failure')
elif equipment_type == 'ELECTRICAL_CRITICAL':
if total_criticality >= 8:
risk_assessment['risk_level'] = 'HIGH'
risk_assessment['business_impact'] = 'MAJOR'
else:
risk_assessment['risk_level'] = 'MEDIUM'
risk_assessment['business_impact'] = 'MODERATE'
risk_assessment['risk_factors'].append('Electrical critical infrastructure')
elif equipment_type == 'TURBINE_SYSTEMS':
if total_criticality >= 8:
risk_assessment['risk_level'] = 'HIGH'
risk_assessment['business_impact'] = 'MAJOR'
else:
risk_assessment['risk_level'] = 'MEDIUM'
risk_assessment['business_impact'] = 'MODERATE'
risk_assessment['risk_factors'].append('Turbine system component')
# Add specific risk factors
if enhanced_features.get('has_structural_failure', 0) == 1:
risk_assessment['risk_factors'].append('Structural integrity compromise')
risk_assessment['risk_level'] = 'HIGH'
if enhanced_features.get('has_safety_mention', 0) == 1:
risk_assessment['risk_factors'].append('Safety concern flagged')
if enhanced_features.get('equipment_redundancy_class', '') == 'SINGLE_CRITICAL':
risk_assessment['risk_factors'].append('Single point of failure')
if enhanced_features.get('turbine_oil_issue', 0) == 1:
risk_assessment['risk_factors'].append('Turbine lubrication system issue')
if enhanced_features.get('electrical_cooling_issue', 0) == 1:
risk_assessment['risk_factors'].append('Electrical equipment cooling problem')
# Determine business impact based on total criticality and equipment type
if total_criticality >= 12:
risk_assessment['business_impact'] = 'SEVERE'
elif total_criticality >= 10:
risk_assessment['business_impact'] = 'MAJOR'
elif total_criticality >= 8:
risk_assessment['business_impact'] = 'MODERATE'
return risk_assessment
def _find_similar_anomalies(self, description: str, top_k: int = 3) -> List[Dict]:
"""Find similar historical anomalies"""
if not description or self.sentence_model is None or self.embeddings is None:
return []
try:
# Encode new description
new_embedding = self.sentence_model.encode([description])
# Calculate similarities
similarities = cosine_similarity(new_embedding, self.embeddings)[0]
# Get top k most similar
top_indices = np.argsort(similarities)[::-1]
similar_anomalies = []
for idx in top_indices[:top_k*2]: # Check more to filter
similarity_score = float(similarities[idx])
# Skip if too similar (likely duplicate) or too dissimilar
if similarity_score > 0.99 or similarity_score < 0.15:
continue
if len(similar_anomalies) >= top_k:
break
similar_anomalies.append({
'description': self.embedding_metadata['descriptions'][idx],
'criticality': int(self.embedding_metadata['criticality_scores'][idx]),
'similarity_score': round(similarity_score, 3),
'section': self.embedding_metadata.get('sections', ['Unknown'])[idx],
'equipment_mentioned': self.embedding_metadata.get('equipment_mentioned', [[]])[idx]
})
return similar_anomalies
except Exception as e:
print(f"Warning: Similarity search failed: {e}")
return []
def _format_simple_response(self, anomaly_data: Dict, predictions: Dict,
total_criticality: int, overall_confidence: float,
needs_review: bool, equipment_risk_assessment: Dict) -> Dict:
"""Format simple response for database insertion"""
return {
'timestamp': datetime.now().isoformat(),
'input_description': anomaly_data.get('Description', ''),
'input_section': anomaly_data.get('Section propriétaire', ''),
'input_equipment': anomaly_data.get('Description de l\'équipement', ''),
# Predictions
'predicted_criticite': total_criticality,
'predicted_fiabilite': predictions['Fiabilité Intégrité'],
'predicted_disponibilite': predictions['Disponibilté'],
'predicted_safety': predictions['Process Safety'],
# AI Metrics
'ai_confidence': round(overall_confidence, 3),
'needs_manual_review': bool(needs_review),
# Equipment Intelligence
'equipment_type': equipment_risk_assessment['equipment_type'],
'equipment_risk_level': equipment_risk_assessment['risk_level'],
'business_impact': equipment_risk_assessment['business_impact'],
'safety_override_applied': any(pred > 3 for pred in predictions.values()),
# Metadata
'model_version': '2.0_enhanced',
'processing_timestamp': datetime.now().isoformat()
}
def _format_rich_response(self, anomaly_data: Dict, predictions: Dict,
confidences: Dict, total_criticality: int,
overall_confidence: float, similar_anomalies: List,
needs_review: bool, confidence_threshold: float,
equipment_risk_assessment: Dict, enhanced_features: Dict) -> Dict:
"""Format rich response for UI display"""
# Calculate additional metrics
reliability_score = self._calculate_reliability_score(
confidences, enhanced_features, equipment_risk_assessment
)
return {
'timestamp': datetime.now().isoformat(),
'input_description': anomaly_data.get('Description', ''),
'input_section': anomaly_data.get('Section propriétaire', ''),
'input_equipment': anomaly_data.get('Description de l\'équipement', ''),
'predictions': {
'criticite_totale': total_criticality,
'components': {
'fiabilite_integrite': predictions['Fiabilité Intégrité'],
'disponibilite': predictions['Disponibilté'],
'process_safety': predictions['Process Safety']
}
},
'confidence': {
'overall_confidence': round(overall_confidence, 3),
'reliability_score': round(reliability_score, 3),
'component_confidence': {
'fiabilite_integrite': round(confidences['Fiabilité Intégrité'], 3),
'disponibilite': round(confidences['Disponibilté'], 3),
'process_safety': round(confidences['Process Safety'], 3)
},
'needs_manual_review': bool(needs_review),
'confidence_threshold': confidence_threshold,
'recommendation': self._get_confidence_recommendation(reliability_score)
},
'equipment_intelligence': {
'equipment_type': equipment_risk_assessment['equipment_type'],
'redundancy_class': equipment_risk_assessment['redundancy_class'],
'risk_level': equipment_risk_assessment['risk_level'],
'business_impact': equipment_risk_assessment['business_impact'],
'risk_factors': equipment_risk_assessment['risk_factors'],
'base_risk_score': round(equipment_risk_assessment['base_risk_score'], 2)
},
'safety_analysis': {
'structural_failure_detected': bool(enhanced_features.get('has_structural_failure', 0)),
'safety_mention_present': bool(enhanced_features.get('has_safety_mention', 0)),
'equipment_malfunction_detected': bool(enhanced_features.get('has_equipment_malfunction', 0)),
'escalation_detected': bool(enhanced_features.get('has_escalation', 0)),
'safety_override_applied': any(pred > 3 for pred in predictions.values()),
'urgency_level': self._determine_urgency_level(total_criticality, reliability_score, equipment_risk_assessment)
},
'similar_anomalies': similar_anomalies,
'analysis': {
'problem_types_detected': enhanced_features.get('problem_types', []),
'equipment_mentioned': enhanced_features.get('equipment_mentioned', []),
'severity_score': enhanced_features.get('enhanced_severity_score', 0),
'technical_complexity': round(enhanced_features.get('technical_complexity', 0), 2),
'pattern_indicators': self._identify_critical_patterns(enhanced_features)
},
'model_metadata': {
'version': '2.0_enhanced',
'features_used': len([k for k in enhanced_features.keys() if k != 'Description']),
'equipment_intelligence_enabled': True,
'safety_rules_enabled': bool(self.safety_rules)
}
}
def _calculate_reliability_score(self, confidences: Dict, enhanced_features: Dict,
equipment_risk_assessment: Dict) -> float:
"""Calculate enhanced reliability score"""
# Base prediction confidence
prediction_confidence = np.mean(list(confidences.values()))
# Model agreement (lower std = higher agreement)
model_agreement = 1.0 - (np.std(list(confidences.values())) / max(np.mean(list(confidences.values())), 0.1))
# Feature completeness
has_description = len(enhanced_features.get('Description', '')) > 10
has_equipment = enhanced_features.get('equipment_type_class', 'UNKNOWN') != 'UNKNOWN'
has_section = enhanced_features.get('Section propriétaire', 'Unknown') != 'Unknown'
feature_completeness = (has_description + has_equipment + has_section) / 3
# Equipment intelligence confidence boost
equipment_confidence_boost = 0.0
if equipment_risk_assessment['equipment_type'] != 'UNKNOWN':
equipment_confidence_boost = 0.1
# Pattern detection confidence
pattern_confidence = 0.0
if enhanced_features.get('has_safety_mention', 0) == 1:
pattern_confidence += 0.1
if enhanced_features.get('has_structural_failure', 0) == 1:
pattern_confidence += 0.15
if enhanced_features.get('equipment_problem_risk', 0) > 1.5:
pattern_confidence += 0.1
# Combine all factors
reliability_score = (
prediction_confidence * 0.4 +
model_agreement * 0.25 +
feature_completeness * 0.2 +
equipment_confidence_boost +
pattern_confidence
)
return min(reliability_score, 1.0)
def _get_confidence_recommendation(self, reliability_score: float) -> str:
"""Get confidence-based recommendation"""
if reliability_score >= 0.85:
return "Very high confidence - Prediction highly reliable"
elif reliability_score >= 0.75:
return "High confidence - Prediction can be trusted"
elif reliability_score >= 0.65:
return "Medium confidence - Consider expert review for critical decisions"
elif reliability_score >= 0.5:
return "Low confidence - Manual review recommended"
else:
return "Very low confidence - Expert assessment required"
def _determine_urgency_level(self, total_criticality: int, reliability_score: float,
equipment_risk_assessment: Dict) -> str:
"""Determine enhanced urgency level"""
# Adjust criticality by reliability and equipment risk
adjusted_criticality = total_criticality * reliability_score
# Equipment type urgency multiplier
equipment_urgency_multiplier = 1.0
if equipment_risk_assessment['equipment_type'] in ['COOLING_CRITICAL', 'ELECTRICAL_CRITICAL']:
equipment_urgency_multiplier = 1.3
elif equipment_risk_assessment['equipment_type'] in ['TURBINE_SYSTEMS']:
equipment_urgency_multiplier = 1.2
final_urgency_score = adjusted_criticality * equipment_urgency_multiplier
if final_urgency_score >= 14:
return "EMERGENCY - Immediate shutdown may be required"
elif final_urgency_score >= 12:
return "CRITICAL - Immediate action required (within 1 hour)"
elif final_urgency_score >= 9:
return "HIGH - Action required within 24 hours"
elif final_urgency_score >= 6:
return "MEDIUM - Action required within 1 week"
else:
return "LOW - Routine maintenance scheduling"
def _identify_critical_patterns(self, enhanced_features: Dict) -> List[str]:
"""Identify critical patterns in the anomaly"""
patterns = []
if enhanced_features.get('has_structural_failure', 0) == 1:
patterns.append('Structural failure detected')
if enhanced_features.get('has_safety_mention', 0) == 1:
patterns.append('Safety concern explicitly mentioned')
if enhanced_features.get('electrical_cooling_issue', 0) == 1:
patterns.append('Electrical equipment cooling issue')
if enhanced_features.get('turbine_oil_issue', 0) == 1:
patterns.append('Turbine lubrication system problem')
if enhanced_features.get('main_equipment_failure', 0) == 1:
patterns.append('Critical single-point equipment failure')
if enhanced_features.get('has_escalation', 0) == 1:
patterns.append('Problem escalation indicated')
if enhanced_features.get('vibration_excessive', 0) == 1:
patterns.append('Excessive vibration detected')
if enhanced_features.get('temperature_elevee', 0) == 1:
patterns.append('High temperature condition')
if enhanced_features.get('enhanced_severity_score', 0) >= 4:
patterns.append('High severity language detected')
return patterns
# ============== CONVENIENCE FUNCTIONS ==============
# Global instance for easy use
_enhanced_ai_instance = None
def get_enhanced_ai_instance():
"""Get singleton enhanced AI instance"""
global _enhanced_ai_instance
if _enhanced_ai_instance is None:
_enhanced_ai_instance = EnhancedAnomalyIntelligence()
return _enhanced_ai_instance
def predict_anomaly_single_enhanced(anomaly_data: Dict, **kwargs) -> Dict:
"""Convenience function for enhanced single prediction"""
ai = get_enhanced_ai_instance()
return ai.predict_single(anomaly_data, **kwargs)
def predict_anomaly_batch_enhanced(anomaly_list: List[Dict], **kwargs) -> List[Dict]:
"""Convenience function for enhanced batch prediction"""
ai = get_enhanced_ai_instance()
return ai.predict_batch(anomaly_list, **kwargs)
def process_excel_upload_enhanced(excel_data: pd.DataFrame,
confidence_threshold: float = 0.7) -> pd.DataFrame:
"""
Process Excel upload with enhanced AI predictions
Args:
excel_data: DataFrame from uploaded Excel
confidence_threshold: Confidence threshold for manual review
Returns:
DataFrame with enhanced AI prediction columns
"""
# Convert DataFrame to list of dicts
anomaly_list = excel_data.to_dict('records')
# Get enhanced batch predictions
predictions = predict_anomaly_batch_enhanced(
anomaly_list,
confidence_threshold=confidence_threshold,
include_similar=False, # Skip for batch processing speed
format_type='simple',
apply_safety_rules=True
)
# Add enhanced prediction columns to original DataFrame
result_df = excel_data.copy()
# Enhanced AI prediction columns
result_df['AI_Predicted_Criticite'] = [p.get('predicted_criticite', 0) for p in predictions]
result_df['AI_Predicted_Fiabilite'] = [p.get('predicted_fiabilite', 0) for p in predictions]
result_df['AI_Predicted_Disponibilite'] = [p.get('predicted_disponibilite', 0) for p in predictions]
result_df['AI_Predicted_Safety'] = [p.get('predicted_safety', 0) for p in predictions]
result_df['AI_Confidence'] = [p.get('ai_confidence', 0.0) for p in predictions]
result_df['AI_Needs_Review'] = [bool(p.get('needs_manual_review', True)) for p in predictions]
# Equipment intelligence columns
result_df['AI_Equipment_Type'] = [p.get('equipment_type', 'UNKNOWN') for p in predictions]
result_df['AI_Risk_Level'] = [p.get('equipment_risk_level', 'LOW') for p in predictions]
result_df['AI_Business_Impact'] = [p.get('business_impact', 'MINOR') for p in predictions]
result_df['AI_Safety_Override'] = [bool(p.get('safety_override_applied', False)) for p in predictions]
# Human verification columns
result_df['Human_Verified'] = False
result_df['Human_Criticite'] = None
result_df['Human_Fiabilite'] = None
result_df['Human_Disponibilite'] = None
result_df['Human_Safety'] = None
result_df['Correction_Reason'] = ''
result_df['Verified_At'] = None
result_df['Verified_By'] = ''
result_df['Expert_Notes'] = ''
return result_df
# ============== ENHANCED EXAMPLE USAGE ==============
if __name__ == "__main__":
# Example 1: Enhanced single anomaly prediction
print("="*70)
print("TESTING ENHANCED SINGLE ANOMALY PREDICTION")
print("="*70)
single_anomaly = {
'Description': 'SAFETY : fuite vapeur importante sur TRANSFO PRINCIPAL, température élevée detectée, vibration excessive',
'Section propriétaire': '34EL',
'Description de l\'équipement': 'TRANSFO PRINCIPAL'
}
result = predict_anomaly_single_enhanced(
single_anomaly,
format_type='rich',
apply_safety_rules=True,
include_similar=True
)
print("Enhanced rich format result:")
print(f"Predicted Criticality: {result['predictions']['criticite_totale']}")
print(f"Equipment Type: {result['equipment_intelligence']['equipment_type']}")
print(f"Risk Level: {result['equipment_intelligence']['risk_level']}")
print(f"Business Impact: {result['equipment_intelligence']['business_impact']}")
print(f"Safety Override Applied: {result['safety_analysis']['safety_override_applied']}")
print(f"Urgency Level: {result['safety_analysis']['urgency_level']}")
print(f"Risk Factors: {result['equipment_intelligence']['risk_factors']}")
# Example 2: Enhanced batch processing
print("\n" + "="*70)
print("TESTING ENHANCED BATCH PREDICTION")
print("="*70)
batch_anomalies = [
{
'Description': 'vibration excessive ALTERNATEUR, bruit anormal détecté',
'Section propriétaire': '34EL',
'Description de l\'équipement': 'ALTERNATEUR'
},
{
'Description': 'fuite huile système hydraulique TURBINE, pression basse',
'Section propriétaire': '34MM',
'Description de l\'équipement': 'TURBINE'
},
{
'Description': 'maintenance préventive DECRASSEUR à prévoir',
'Section propriétaire': '34MC',
'Description de l\'équipement': 'DECRASSEUR'
},
{
'Description': 'percement conduite vapeur VENTILATEUR DE REFROIDISSEMENT TP',
'Section propriétaire': '34EL',
'Description de l\'équipement': 'VENTILATEUR DE REFROIDISSEMENT TP'
}
]
batch_results = predict_anomaly_batch_enhanced(
batch_anomalies,
confidence_threshold=0.7,
format_type='simple',
apply_safety_rules=True
)
print("Enhanced batch results:")
for i, result in enumerate(batch_results):
print(f"\nAnomaly {i+1}:")
print(f" Equipment Type: {result.get('equipment_type', 'N/A')}")
print(f" Criticité: {result.get('predicted_criticite', 'N/A')}")
print(f" Risk Level: {result.get('equipment_risk_level', 'N/A')}")
print(f" Business Impact: {result.get('business_impact', 'N/A')}")
print(f" Confidence: {result.get('ai_confidence', 'N/A')}")
print(f" Safety Override: {result.get('safety_override_applied', 'N/A')}")
print(f" Needs Review: {result.get('needs_manual_review', 'N/A')}")
# Example 3: Enhanced Excel processing simulation
print("\n" + "="*70)
print("TESTING ENHANCED EXCEL PROCESSING")
print("="*70)
# Simulate Excel data with various equipment types
excel_df = pd.DataFrame([
{
'Description': 'problème refroidissement TRANSFO PRINCIPAL',
'Section propriétaire': '34EL',
'Description de l\'équipement': 'TRANSFO PRINCIPAL',
'Date de détéction de l\'anomalie': '2025-01-15'
},
{
'Description': 'SAFETY : éclatement tube chaudière, fissure détectée',
'Section propriétaire': '34MD',
'Description de l\'équipement': 'CHAUDIERE',
'Date de détéction de l\'anomalie': '2025-01-16'
},
{
'Description': 'maintenance POMPE A prévoir',
'Section propriétaire': '34MC',
'Description de l\'équipement': 'POMPE',
'Date de détéction de l\'anomalie': '2025-01-17'
}
])
processed_df = process_excel_upload_enhanced(excel_df, confidence_threshold=0.7)
print("Enhanced processed Excel columns:")
enhanced_columns = [col for col in processed_df.columns if col.startswith('AI_')]
print(enhanced_columns)
print("\nSample of enhanced processed data:")
display_cols = ['Description', 'AI_Predicted_Criticite', 'AI_Equipment_Type',
'AI_Risk_Level', 'AI_Business_Impact', 'AI_Safety_Override', 'AI_Needs_Review']
print(processed_df[display_cols].to_string(index=False))
print("\n" + "🎯" + "="*68)
print("ENHANCED ANOMALY INTELLIGENCE v2.0 TESTS COMPLETED SUCCESSFULLY!")
print("="*70)
print("✓ Equipment Intelligence Integration")
print("✓ Safety Override Rules")
print("✓ Enhanced Risk Assessment")
print("✓ Conservative Prediction Bias")
print("✓ Business Impact Analysis")
print("✓ Production-Ready Performance")
print("="*70)