bluestarburst
commited on
Commit
•
eea7935
1
Parent(s):
8a7d8d8
Upload folder using huggingface_hub
Browse files- handler.py +6 -3
- requirements.txt +0 -0
handler.py
CHANGED
@@ -12,8 +12,8 @@ import torchvision
|
|
12 |
|
13 |
import numpy as np
|
14 |
|
|
|
15 |
|
16 |
-
from animatediff.pipelines.pipeline_animation import AnimationPipeline
|
17 |
from animatediff.models.unet import UNet3DConditionModel
|
18 |
from animatediff.pipelines.pipeline_animation import AnimationPipeline
|
19 |
from animatediff.utils.util import save_videos_grid
|
@@ -23,7 +23,10 @@ from animatediff.utils.util import load_weights
|
|
23 |
class EndpointHandler():
|
24 |
def __init__(self, model_path: str = "models/StableDiffusion/", inference_config_path: str = "configs/inference/inference-v3.yaml", motion_module: str = "models/Motion_Module/mm_sd_v15.ckpt"):
|
25 |
|
26 |
-
inference_config = OmegaConf.load(inference_config_path)
|
|
|
|
|
|
|
27 |
### >>> create validation pipeline >>> ###
|
28 |
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer")
|
29 |
text_encoder = CLIPTextModel.from_pretrained(model_path, subfolder="text_encoder")
|
@@ -88,4 +91,4 @@ class EndpointHandler():
|
|
88 |
# This function will be called during inference time.
|
89 |
|
90 |
|
91 |
-
new_handler = EndpointHandler()
|
|
|
12 |
|
13 |
import numpy as np
|
14 |
|
15 |
+
from diffusers import AutoPipelineForText2Image
|
16 |
|
|
|
17 |
from animatediff.models.unet import UNet3DConditionModel
|
18 |
from animatediff.pipelines.pipeline_animation import AnimationPipeline
|
19 |
from animatediff.utils.util import save_videos_grid
|
|
|
23 |
class EndpointHandler():
|
24 |
def __init__(self, model_path: str = "models/StableDiffusion/", inference_config_path: str = "configs/inference/inference-v3.yaml", motion_module: str = "models/Motion_Module/mm_sd_v15.ckpt"):
|
25 |
|
26 |
+
# inference_config = OmegaConf.load(inference_config_path)
|
27 |
+
|
28 |
+
inference_config = {'unet_additional_kwargs': {'unet_use_cross_frame_attention': False, 'unet_use_temporal_attention': False, 'use_motion_module': True, 'motion_module_resolutions': [1, 2, 4, 8], 'motion_module_mid_block': False, 'motion_module_decoder_only': False, 'motion_module_type': 'Vanilla', 'motion_module_kwargs': {'num_attention_heads': 8, 'num_transformer_block': 1, 'attention_block_types': ['Temporal_Self', 'Temporal_Self'], 'temporal_position_encoding': True, 'temporal_position_encoding_max_len': 24, 'temporal_attention_dim_div': 1}}, 'noise_scheduler_kwargs': {'DDIMScheduler': {'num_train_timesteps': 1000, 'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': 'linear', 'steps_offset': 1, 'clip_sample': False}, 'EulerAncestralDiscreteScheduler': {'num_train_timesteps': 1000, 'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': 'linear'}, 'KDPM2AncestralDiscreteScheduler': {'num_train_timesteps': 1000, 'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': 'linear'}}}
|
29 |
+
|
30 |
### >>> create validation pipeline >>> ###
|
31 |
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer")
|
32 |
text_encoder = CLIPTextModel.from_pretrained(model_path, subfolder="text_encoder")
|
|
|
91 |
# This function will be called during inference time.
|
92 |
|
93 |
|
94 |
+
# new_handler = EndpointHandler()
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|