|
import os |
|
import imageio |
|
import numpy as np |
|
from typing import Union |
|
|
|
import torch |
|
import torchvision |
|
|
|
from tqdm import tqdm |
|
from einops import rearrange |
|
|
|
|
|
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=1): |
|
videos = rearrange(videos, "b c t h w -> t b c h w") |
|
outputs = [] |
|
for x in videos: |
|
x = torchvision.utils.make_grid(x, nrow=n_rows) |
|
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) |
|
if rescale: |
|
x = (x + 1.0) / 2.0 |
|
x = (x * 255).numpy().astype(np.uint8) |
|
outputs.append(x) |
|
|
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
imageio.mimsave(path, outputs, duration=len(outputs)/fps, loop=0) |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def init_prompt(prompt, pipeline): |
|
uncond_input = pipeline.tokenizer( |
|
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length, |
|
return_tensors="pt" |
|
) |
|
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0] |
|
text_input = pipeline.tokenizer( |
|
[prompt], |
|
padding="max_length", |
|
max_length=pipeline.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0] |
|
context = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
return context |
|
|
|
|
|
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, |
|
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler): |
|
timestep, next_timestep = min( |
|
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep |
|
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod |
|
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep] |
|
beta_prod_t = 1 - alpha_prod_t |
|
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 |
|
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output |
|
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction |
|
return next_sample |
|
|
|
|
|
def get_noise_pred_single(latents, t, context, unet): |
|
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"] |
|
return noise_pred |
|
|
|
|
|
@torch.no_grad() |
|
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt): |
|
context = init_prompt(prompt, pipeline) |
|
uncond_embeddings, cond_embeddings = context.chunk(2) |
|
all_latent = [latent] |
|
latent = latent.clone().detach() |
|
for i in tqdm(range(num_inv_steps)): |
|
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1] |
|
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet) |
|
latent = next_step(noise_pred, t, latent, ddim_scheduler) |
|
all_latent.append(latent) |
|
return all_latent |
|
|
|
|
|
@torch.no_grad() |
|
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""): |
|
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt) |
|
return ddim_latents |
|
|