bluestarburst's picture
Upload folder using huggingface_hub
db8cbef
raw
history blame
6.27 kB
# this is the huggingface handler file
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from omegaconf import OmegaConf
from huggingface_hub import hf_hub_download, try_to_load_from_cache
import os
import json
from diffusers.utils.import_utils import is_xformers_available
from typing import Any
import torch
import imageio
import torchvision
import numpy as np
from einops import rearrange
from animatediff.models.unet import UNet3DConditionModel
from animatediff.pipelines.pipeline_animation import AnimationPipeline
from animatediff.utils.util import save_videos_grid
from animatediff.utils.util import load_weights
class EndpointHandler():
def __init__(self, model_path: str = "bluestarburst/AnimateDiff-SceneFusion"):
# inference_config_path = "configs/inference/inference-v3.yaml"
inference_config_path = hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="configs/inference/inference-v3.yaml")
print(inference_config_path)
inference_config = OmegaConf.load(inference_config_path)
# inference_config = {'unet_additional_kwargs': {'unet_use_cross_frame_attention': False, 'unet_use_temporal_attention': False, 'use_motion_module': True, 'motion_module_resolutions': [1, 2, 4, 8], 'motion_module_mid_block': False, 'motion_module_decoder_only': False, 'motion_module_type': 'Vanilla', 'motion_module_kwargs': {'num_attention_heads': 8, 'num_transformer_block': 1, 'attention_block_types': ['Temporal_Self', 'Temporal_Self'], 'temporal_position_encoding': True, 'temporal_position_encoding_max_len': 24, 'temporal_attention_dim_div': 1}}, 'noise_scheduler_kwargs': {'DDIMScheduler': {'num_train_timesteps': 1000, 'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': 'linear', 'steps_offset': 1, 'clip_sample': False}, 'EulerAncestralDiscreteScheduler': {'num_train_timesteps': 1000, 'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': 'linear'}, 'KDPM2AncestralDiscreteScheduler': {'num_train_timesteps': 1000, 'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': 'linear'}}}
### >>> create validation pipeline >>> ###
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="models/StableDiffusion/tokenizer")
text_encoder = CLIPTextModel.from_pretrained(model_path, subfolder="models/StableDiffusion/text_encoder")
vae = AutoencoderKL.from_pretrained(model_path, subfolder="models/StableDiffusion/vae")
unet_model_path = hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="models/StableDiffusion/unet/diffusion_pytorch_model.bin")
unet_config_path = hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="models/StableDiffusion/unet/config.json")
print(unet_model_path)
unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path=unet_model_path, unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs), config_path=unet_config_path)
if is_xformers_available(): unet.enable_xformers_memory_efficient_attention()
else: assert False
self.pipeline = AnimationPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs.DDIMScheduler))
).to("cuda")
# huggingface download motion module from bluestarburst/AnimateDiff-SceneFusion/models/Motion_Module/mm_sd_v15.ckpt
motion_module = hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="models/Motion_Module/mm_sd_v15.ckpt")
self.pipeline = load_weights(
self.pipeline,
# motion module
motion_module_path = motion_module,
motion_module_lora_configs = [],
# image layers
dreambooth_model_path = "",
lora_model_path = "",
lora_alpha = 0.8,
).to("cuda")
def __call__(self, data : Any):
"""
__call__ method will be called once per request. This can be used to
run inference.
"""
prompt = data.pop("prompt", "")
negative_prompt = data.pop("negative_prompt", "easynegative,bad_construction,bad_structure,bad_wail,bad_windows,blurry,cloned_window,cropped,deformed,disfigured,error,extra_windows,extra_chimney,extra_door,extra_structure,extra_frame,fewer_digits,fused_structure,gross_proportions,jpeg_artifacts,long_roof,low_quality,structure_limbs,missing_windows,missing_doors,missing_roofs,mutated_structure,mutation,normal_quality,out_of_frame,owres,poorly_drawn_structure,poorly_drawn_house,signature,text,too_many_windows,ugly,username,uta,watermark,worst_quality")
steps = data.pop("steps", 25)
guidance_scale = data.pop("guidance_scale", 12.5)
vids = self.pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=guidance_scale,
width= 256,
height= 256,
video_length= 5,
).videos
videos = rearrange(vids, "b c t h w -> t b c h w")
n_rows=6
fps=1
loop = True
rescale=False
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
path = "output.gif"
imageio.mimsave(path, outputs, fps=fps)
# open the file as binary and read the data
with open(path, mode="rb") as file:
fileContent = file.read()
# return json response with binary data
return json.loads(fileContent)
# This is the entry point for the serverless function.
# This function will be called during inference time.
# new_handler = EndpointHandler()