Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 286.04 +/- 16.29
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb245bd8ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb245bd8f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb245bd9050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb245bd90e0>", "_build": "<function ActorCriticPolicy._build at 0x7fb245bd9170>", "forward": "<function ActorCriticPolicy.forward at 0x7fb245bd9200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb245bd9290>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb245bd9320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb245bd93b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb245bd9440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb245bd94d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb245c2a690>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652816777.3981726, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAARjrKJZg/HsxuPAsh2b7mJnw9gAyUPQAAAAAAAAAAzUwbufaMebpOVg81mj6CMC8DyjodoVm0AACAPwAAgD8zlKm8mIS5PZTHFD6LQJq+ypmkPRburr0AAAAAAAAAAEC2Nz644LE8DuiyvUdpR7wLukA+OtRSvQAAgD8AAIA/mmGdPGW2tz+Y9CI/ZxmrPuLEg7zTnI29AAAAAAAAAAAa2iC9e3mEvMLnrT0nOpA8gZdPPX2pyj0AAIA/AACAPzMOsj1wqZU/eqqCPo2c4L5u6wQ+ks5IPgAAAAAAAAAATceFPb1bNT799xW+kR7LvuJfqL0lxms8AAAAAAAAAACaOUe8g4pgvMa+HD08IzG+BkbQu3J7vT0AAIA/AACAP5o+dj54RaY//BejPkuoyb4cDgg/w+r0PQAAAAAAAAAAmgMKvR8Q/7u4PBE+t2NMvhdayzsslLS7AACAPwAAgD/zT7i9XcuNPvou2z1OwZC+oGAMPs/mnb0AAAAAAAAAAJp6/DzhMJ+6OrwxNy/3hTHk6tm6uq1MtgAAgD8AAIA/ZlOTvaZikj9lAUe+0E31vgXJ471uDgM9AAAAAAAAAACzWje95BWXP4JPJ74Rn+2+k9CIvcBj/LwAAAAAAAAAABpwkT2FC/S5WD4Us2/qejCjYHa7Wnu9MwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqvQTzi5gcUCUhpRSlIwBbJRL2owBdJRHQJ14fYGt6ol1fZQoaAZoCWgPQwjsM2d9SiRzQJSGlFKUaBVL5mgWR0CdeJc8DB/JdX2UKGgGaAloD0MIgC2vXK9acECUhpRSlGgVS+FoFkdAnXiizC1qnHV9lChoBmgJaA9DCPHYz2IpBXNAlIaUUpRoFUvbaBZHQJ157Wy1NQF1fZQoaAZoCWgPQwj5u3fU2C1wQJSGlFKUaBVL32gWR0Cdeez0Yj0MdX2UKGgGaAloD0MImX6JeKuTc0CUhpRSlGgVS/5oFkdAnXn5yZKFqXV9lChoBmgJaA9DCKVJKej2M3BAlIaUUpRoFU0FAWgWR0CdegrzoUzsdX2UKGgGaAloD0MIVDVB1H0/bkCUhpRSlGgVS+5oFkdAnXscm0E5hnV9lChoBmgJaA9DCHo3FhQGRnBAlIaUUpRoFUvjaBZHQJ17MLRa5gB1fZQoaAZoCWgPQwjCps6jYkBzQJSGlFKUaBVL3WgWR0Cdezi9Zid8dX2UKGgGaAloD0MIjGg7pm5+ckCUhpRSlGgVTQoBaBZHQJ17VInSfDl1fZQoaAZoCWgPQwgYCtgOxllzQJSGlFKUaBVL2WgWR0Cde4QF9roGdX2UKGgGaAloD0MIyNEcWTklc0CUhpRSlGgVS/5oFkdAnXuEihWYGHV9lChoBmgJaA9DCIf4hy29r3FAlIaUUpRoFU0BAWgWR0CdfBSc9W6tdX2UKGgGaAloD0MI8kBkkWYWcECUhpRSlGgVS9ZoFkdAnX1VA/s3Q3V9lChoBmgJaA9DCGhbzTojnXNAlIaUUpRoFUvbaBZHQJ19mK+BYmt1fZQoaAZoCWgPQwiNQ/0ubDxwQJSGlFKUaBVL82gWR0CdfbCbtqpMdX2UKGgGaAloD0MIJlRweIHvc0CUhpRSlGgVS/9oFkdAnX3ATdtVJnV9lChoBmgJaA9DCB9JSQ9DN3FAlIaUUpRoFUv1aBZHQJ1+IEt/WlN1fZQoaAZoCWgPQwjD19e61ElyQJSGlFKUaBVL9GgWR0Cdf2D/VAiWdX2UKGgGaAloD0MIWI0lrA0xc0CUhpRSlGgVS/5oFkdAnX+hn3+MqHV9lChoBmgJaA9DCJIgXAEFFnFAlIaUUpRoFU0FAWgWR0Cdf+dQO4G2dX2UKGgGaAloD0MIv4HJjSJ2ckCUhpRSlGgVS9ZoFkdAnX/4O2AoX3V9lChoBmgJaA9DCFwC8E/pvnJAlIaUUpRoFU0KAWgWR0Cdf/dGRV6vdX2UKGgGaAloD0MISUp6GJpBcUCUhpRSlGgVS+BoFkdAnYAeuNgjQnV9lChoBmgJaA9DCPsfYK1al21AlIaUUpRoFUvgaBZHQJ2AUHB1s+F1fZQoaAZoCWgPQwi0yeGTziFyQJSGlFKUaBVL5mgWR0CdgFQmu1WsdX2UKGgGaAloD0MIdjbkn9kGc0CUhpRSlGgVS+1oFkdAnYC52ZAprnV9lChoBmgJaA9DCMqNImuNWnJAlIaUUpRoFUvxaBZHQJ2AzgZTAFh1fZQoaAZoCWgPQwjl795RoxlzQJSGlFKUaBVL7mgWR0CdgUWsRxtIdX2UKGgGaAloD0MI8pVASqwlcUCUhpRSlGgVS+JoFkdAnZSZgkTpPnV9lChoBmgJaA9DCL37473qpnBAlIaUUpRoFUvzaBZHQJ2VLD4xk/d1fZQoaAZoCWgPQwheTZ6yWn1wQJSGlFKUaBVL52gWR0CdlVEHdGiIdX2UKGgGaAloD0MIebEwRE6FckCUhpRSlGgVTRABaBZHQJ2VddWyTpx1fZQoaAZoCWgPQwiveVVntfxuQJSGlFKUaBVNFwFoFkdAnZX6hxo7FXV9lChoBmgJaA9DCJZa7zcaZnJAlIaUUpRoFUvWaBZHQJ2WsnLJSzh1fZQoaAZoCWgPQwgejNgnAElxQJSGlFKUaBVL2mgWR0Cdlt/uLJjldX2UKGgGaAloD0MIQBL27WThckCUhpRSlGgVS85oFkdAnZcEGeMAFXV9lChoBmgJaA9DCFeUEoJV93BAlIaUUpRoFUv2aBZHQJ2XAlyBCld1fZQoaAZoCWgPQwjumLor+6BxQJSGlFKUaBVL7mgWR0CdlxALRa5gdX2UKGgGaAloD0MIrizRWabhcUCUhpRSlGgVS+loFkdAnZc/HDJlrnV9lChoBmgJaA9DCI/66xVWXXFAlIaUUpRoFUvtaBZHQJ2Xdrvb48F1fZQoaAZoCWgPQwhgVijSPXpzQJSGlFKUaBVL1GgWR0Cdl5j2zv7WdX2UKGgGaAloD0MIZ5jaUkfGc0CUhpRSlGgVTQcBaBZHQJ2YLwc5sCV1fZQoaAZoCWgPQwj4a7JG/QJyQJSGlFKUaBVNDQFoFkdAnZjRwl0HQnV9lChoBmgJaA9DCCaKkLodcXFAlIaUUpRoFUv1aBZHQJ2Y2PcSGrV1fZQoaAZoCWgPQwgMAiuH1p9xQJSGlFKUaBVNCAFoFkdAnZqwA6uGK3V9lChoBmgJaA9DCGfuIeH7/m9AlIaUUpRoFUvsaBZHQJ2auwX668R1fZQoaAZoCWgPQwgeh8H81X5wQJSGlFKUaBVL9WgWR0CdmtHerMkhdX2UKGgGaAloD0MIBP9byQ7Kc0CUhpRSlGgVS9VoFkdAnZraFZgXuXV9lChoBmgJaA9DCNiBc0YUXnBAlIaUUpRoFUvzaBZHQJ2bEhTwUg11fZQoaAZoCWgPQwgf1hu1wgBxQJSGlFKUaBVL3GgWR0Cdm/6QNkOJdX2UKGgGaAloD0MIpIl3gCelcECUhpRSlGgVS95oFkdAnZwONxVAA3V9lChoBmgJaA9DCE2DonlAUnNAlIaUUpRoFUvoaBZHQJ2cLsNUfgd1fZQoaAZoCWgPQwiny2JiMxNyQJSGlFKUaBVL7WgWR0CdnHNKRMewdX2UKGgGaAloD0MIn1p9ddWpcUCUhpRSlGgVS/5oFkdAnZyKwt8NQXV9lChoBmgJaA9DCIbj+QxoJHNAlIaUUpRoFUvgaBZHQJ2cmQMhHLB1fZQoaAZoCWgPQwholZnSOkVzQJSGlFKUaBVL2WgWR0CdnJkzGgjAdX2UKGgGaAloD0MIIjZYOImFcUCUhpRSlGgVS/JoFkdAnZy8wYcebXV9lChoBmgJaA9DCGZqEryhGXFAlIaUUpRoFUvaaBZHQJ2dzkT6BRR1fZQoaAZoCWgPQwh3gZICCx9xQJSGlFKUaBVL+2gWR0Cdndg4OtnxdX2UKGgGaAloD0MI2XqGcMzHbUCUhpRSlGgVS91oFkdAnZ3mza9K3HV9lChoBmgJaA9DCK5nCMfsMnFAlIaUUpRoFUveaBZHQJ2fvPmgam51fZQoaAZoCWgPQwjxY8xdSxhzQJSGlFKUaBVL7WgWR0CdoAUGmk30dX2UKGgGaAloD0MIIehoVUvSb0CUhpRSlGgVS/FoFkdAnaAqREF4cHV9lChoBmgJaA9DCHalZaTeqnFAlIaUUpRoFUv4aBZHQJ2gehPCVKR1fZQoaAZoCWgPQwieP21UpzJuQJSGlFKUaBVL22gWR0CdoOrHEMspdX2UKGgGaAloD0MIkgThCujgcECUhpRSlGgVTQMBaBZHQJ2g7fqHGjt1fZQoaAZoCWgPQwgqyqXxy0FyQJSGlFKUaBVL7WgWR0CdoWJ8fFJhdX2UKGgGaAloD0MI9z/AWjWBckCUhpRSlGgVS+BoFkdAnaF5/kNnXnV9lChoBmgJaA9DCBsOSwM/43FAlIaUUpRoFUvdaBZHQJ2hgQ7LdN51fZQoaAZoCWgPQwix+47hsf1IQJSGlFKUaBVLoGgWR0CdoZw4bS7YdX2UKGgGaAloD0MI3EsaozULcUCUhpRSlGgVTQEBaBZHQJ2h72Bas6t1fZQoaAZoCWgPQwjVdhN8k19wQJSGlFKUaBVL+GgWR0CdoiFDfFaTdX2UKGgGaAloD0MI1Jy8yARXckCUhpRSlGgVS/ZoFkdAnaI62F36h3V9lChoBmgJaA9DCOoI4GYxuHFAlIaUUpRoFUv/aBZHQJ2iQwg1WKd1fZQoaAZoCWgPQwgQ6EzaVHRyQJSGlFKUaBVL5GgWR0Cdou+EAYHgdX2UKGgGaAloD0MIVg4tsh29b0CUhpRSlGgVS+ZoFkdAnaMQNPP9k3V9lChoBmgJaA9DCBHg9C7ea3FAlIaUUpRoFUveaBZHQJ2k8F+uvEF1fZQoaAZoCWgPQwgEV3kC4UhwQJSGlFKUaBVL6GgWR0CdpO9BKL88dX2UKGgGaAloD0MIWRmNfN50c0CUhpRSlGgVS+1oFkdAnaVym/FirnV9lChoBmgJaA9DCHJtqBinyHFAlIaUUpRoFUvjaBZHQJ2mAVO9FnZ1fZQoaAZoCWgPQwiRup195ZBvQJSGlFKUaBVL5WgWR0CdpgyGi5/cdX2UKGgGaAloD0MIluttM9VscUCUhpRSlGgVS9doFkdAnaY0ETxoZnV9lChoBmgJaA9DCHRfzmwX33FAlIaUUpRoFUv+aBZHQJ2mMyAQQMB1fZQoaAZoCWgPQwgT1sbYSXRwQJSGlFKUaBVL5WgWR0Cdpq33Hq/udX2UKGgGaAloD0MIUg/R6M4Vc0CUhpRSlGgVS9NoFkdAnaa+P3i71HV9lChoBmgJaA9DCNb/OcyXAW9AlIaUUpRoFUvxaBZHQJ2nGtHQQcx1fZQoaAZoCWgPQwhhpu1fGTlzQJSGlFKUaBVL22gWR0Cdp03PiT+vdX2UKGgGaAloD0MIoYLDCyLpcECUhpRSlGgVS91oFkdAnadjXarWAnV9lChoBmgJaA9DCOI9B5bjMHFAlIaUUpRoFUvvaBZHQJ2noPAfuCx1fZQoaAZoCWgPQwjL2TujrThyQJSGlFKUaBVNEgFoFkdAnae35nDiwXV9lChoBmgJaA9DCD85ChAFIm9AlIaUUpRoFUviaBZHQJ2oTqB3A211fZQoaAZoCWgPQwiuSbcl8uRwQJSGlFKUaBVNDQFoFkdAnakSsOoYN3V9lChoBmgJaA9DCHV1x2Kb0G9AlIaUUpRoFUv8aBZHQJ2qzHlwLmZ1fZQoaAZoCWgPQwggCmZMAS1yQJSGlFKUaBVL+GgWR0CdqzxkNFz/dX2UKGgGaAloD0MIsDxITxExcUCUhpRSlGgVS+ZoFkdAnathvegte3V9lChoBmgJaA9DCM3qHW6HIExAlIaUUpRoFUu7aBZHQJ2rXyvs7dV1fZQoaAZoCWgPQwjh1AeSt7xxQJSGlFKUaBVL42gWR0Cdq3eu3c59dX2UKGgGaAloD0MIISBfQsUDcUCUhpRSlGgVS/VoFkdAnavm1hLGrHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c7a8eb1c133a1659fab4b141ddeb4ba58e647d9f0dfb017db8d1669014e4817
|
3 |
+
size 144002
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb245bd8ef0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb245bd8f80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb245bd9050>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb245bd90e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb245bd9170>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb245bd9200>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb245bd9290>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb245bd9320>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb245bd93b0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb245bd9440>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb245bd94d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb245c2a690>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652816777.3981726,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAARjrKJZg/HsxuPAsh2b7mJnw9gAyUPQAAAAAAAAAAzUwbufaMebpOVg81mj6CMC8DyjodoVm0AACAPwAAgD8zlKm8mIS5PZTHFD6LQJq+ypmkPRburr0AAAAAAAAAAEC2Nz644LE8DuiyvUdpR7wLukA+OtRSvQAAgD8AAIA/mmGdPGW2tz+Y9CI/ZxmrPuLEg7zTnI29AAAAAAAAAAAa2iC9e3mEvMLnrT0nOpA8gZdPPX2pyj0AAIA/AACAPzMOsj1wqZU/eqqCPo2c4L5u6wQ+ks5IPgAAAAAAAAAATceFPb1bNT799xW+kR7LvuJfqL0lxms8AAAAAAAAAACaOUe8g4pgvMa+HD08IzG+BkbQu3J7vT0AAIA/AACAP5o+dj54RaY//BejPkuoyb4cDgg/w+r0PQAAAAAAAAAAmgMKvR8Q/7u4PBE+t2NMvhdayzsslLS7AACAPwAAgD/zT7i9XcuNPvou2z1OwZC+oGAMPs/mnb0AAAAAAAAAAJp6/DzhMJ+6OrwxNy/3hTHk6tm6uq1MtgAAgD8AAIA/ZlOTvaZikj9lAUe+0E31vgXJ471uDgM9AAAAAAAAAACzWje95BWXP4JPJ74Rn+2+k9CIvcBj/LwAAAAAAAAAABpwkT2FC/S5WD4Us2/qejCjYHa7Wnu9MwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqvQTzi5gcUCUhpRSlIwBbJRL2owBdJRHQJ14fYGt6ol1fZQoaAZoCWgPQwjsM2d9SiRzQJSGlFKUaBVL5mgWR0CdeJc8DB/JdX2UKGgGaAloD0MIgC2vXK9acECUhpRSlGgVS+FoFkdAnXiizC1qnHV9lChoBmgJaA9DCPHYz2IpBXNAlIaUUpRoFUvbaBZHQJ157Wy1NQF1fZQoaAZoCWgPQwj5u3fU2C1wQJSGlFKUaBVL32gWR0Cdeez0Yj0MdX2UKGgGaAloD0MImX6JeKuTc0CUhpRSlGgVS/5oFkdAnXn5yZKFqXV9lChoBmgJaA9DCKVJKej2M3BAlIaUUpRoFU0FAWgWR0CdegrzoUzsdX2UKGgGaAloD0MIVDVB1H0/bkCUhpRSlGgVS+5oFkdAnXscm0E5hnV9lChoBmgJaA9DCHo3FhQGRnBAlIaUUpRoFUvjaBZHQJ17MLRa5gB1fZQoaAZoCWgPQwjCps6jYkBzQJSGlFKUaBVL3WgWR0Cdezi9Zid8dX2UKGgGaAloD0MIjGg7pm5+ckCUhpRSlGgVTQoBaBZHQJ17VInSfDl1fZQoaAZoCWgPQwgYCtgOxllzQJSGlFKUaBVL2WgWR0Cde4QF9roGdX2UKGgGaAloD0MIyNEcWTklc0CUhpRSlGgVS/5oFkdAnXuEihWYGHV9lChoBmgJaA9DCIf4hy29r3FAlIaUUpRoFU0BAWgWR0CdfBSc9W6tdX2UKGgGaAloD0MI8kBkkWYWcECUhpRSlGgVS9ZoFkdAnX1VA/s3Q3V9lChoBmgJaA9DCGhbzTojnXNAlIaUUpRoFUvbaBZHQJ19mK+BYmt1fZQoaAZoCWgPQwiNQ/0ubDxwQJSGlFKUaBVL82gWR0CdfbCbtqpMdX2UKGgGaAloD0MIJlRweIHvc0CUhpRSlGgVS/9oFkdAnX3ATdtVJnV9lChoBmgJaA9DCB9JSQ9DN3FAlIaUUpRoFUv1aBZHQJ1+IEt/WlN1fZQoaAZoCWgPQwjD19e61ElyQJSGlFKUaBVL9GgWR0Cdf2D/VAiWdX2UKGgGaAloD0MIWI0lrA0xc0CUhpRSlGgVS/5oFkdAnX+hn3+MqHV9lChoBmgJaA9DCJIgXAEFFnFAlIaUUpRoFU0FAWgWR0Cdf+dQO4G2dX2UKGgGaAloD0MIv4HJjSJ2ckCUhpRSlGgVS9ZoFkdAnX/4O2AoX3V9lChoBmgJaA9DCFwC8E/pvnJAlIaUUpRoFU0KAWgWR0Cdf/dGRV6vdX2UKGgGaAloD0MISUp6GJpBcUCUhpRSlGgVS+BoFkdAnYAeuNgjQnV9lChoBmgJaA9DCPsfYK1al21AlIaUUpRoFUvgaBZHQJ2AUHB1s+F1fZQoaAZoCWgPQwi0yeGTziFyQJSGlFKUaBVL5mgWR0CdgFQmu1WsdX2UKGgGaAloD0MIdjbkn9kGc0CUhpRSlGgVS+1oFkdAnYC52ZAprnV9lChoBmgJaA9DCMqNImuNWnJAlIaUUpRoFUvxaBZHQJ2AzgZTAFh1fZQoaAZoCWgPQwjl795RoxlzQJSGlFKUaBVL7mgWR0CdgUWsRxtIdX2UKGgGaAloD0MI8pVASqwlcUCUhpRSlGgVS+JoFkdAnZSZgkTpPnV9lChoBmgJaA9DCL37473qpnBAlIaUUpRoFUvzaBZHQJ2VLD4xk/d1fZQoaAZoCWgPQwheTZ6yWn1wQJSGlFKUaBVL52gWR0CdlVEHdGiIdX2UKGgGaAloD0MIebEwRE6FckCUhpRSlGgVTRABaBZHQJ2VddWyTpx1fZQoaAZoCWgPQwiveVVntfxuQJSGlFKUaBVNFwFoFkdAnZX6hxo7FXV9lChoBmgJaA9DCJZa7zcaZnJAlIaUUpRoFUvWaBZHQJ2WsnLJSzh1fZQoaAZoCWgPQwgejNgnAElxQJSGlFKUaBVL2mgWR0Cdlt/uLJjldX2UKGgGaAloD0MIQBL27WThckCUhpRSlGgVS85oFkdAnZcEGeMAFXV9lChoBmgJaA9DCFeUEoJV93BAlIaUUpRoFUv2aBZHQJ2XAlyBCld1fZQoaAZoCWgPQwjumLor+6BxQJSGlFKUaBVL7mgWR0CdlxALRa5gdX2UKGgGaAloD0MIrizRWabhcUCUhpRSlGgVS+loFkdAnZc/HDJlrnV9lChoBmgJaA9DCI/66xVWXXFAlIaUUpRoFUvtaBZHQJ2Xdrvb48F1fZQoaAZoCWgPQwhgVijSPXpzQJSGlFKUaBVL1GgWR0Cdl5j2zv7WdX2UKGgGaAloD0MIZ5jaUkfGc0CUhpRSlGgVTQcBaBZHQJ2YLwc5sCV1fZQoaAZoCWgPQwj4a7JG/QJyQJSGlFKUaBVNDQFoFkdAnZjRwl0HQnV9lChoBmgJaA9DCCaKkLodcXFAlIaUUpRoFUv1aBZHQJ2Y2PcSGrV1fZQoaAZoCWgPQwgMAiuH1p9xQJSGlFKUaBVNCAFoFkdAnZqwA6uGK3V9lChoBmgJaA9DCGfuIeH7/m9AlIaUUpRoFUvsaBZHQJ2auwX668R1fZQoaAZoCWgPQwgeh8H81X5wQJSGlFKUaBVL9WgWR0CdmtHerMkhdX2UKGgGaAloD0MIBP9byQ7Kc0CUhpRSlGgVS9VoFkdAnZraFZgXuXV9lChoBmgJaA9DCNiBc0YUXnBAlIaUUpRoFUvzaBZHQJ2bEhTwUg11fZQoaAZoCWgPQwgf1hu1wgBxQJSGlFKUaBVL3GgWR0Cdm/6QNkOJdX2UKGgGaAloD0MIpIl3gCelcECUhpRSlGgVS95oFkdAnZwONxVAA3V9lChoBmgJaA9DCE2DonlAUnNAlIaUUpRoFUvoaBZHQJ2cLsNUfgd1fZQoaAZoCWgPQwiny2JiMxNyQJSGlFKUaBVL7WgWR0CdnHNKRMewdX2UKGgGaAloD0MIn1p9ddWpcUCUhpRSlGgVS/5oFkdAnZyKwt8NQXV9lChoBmgJaA9DCIbj+QxoJHNAlIaUUpRoFUvgaBZHQJ2cmQMhHLB1fZQoaAZoCWgPQwholZnSOkVzQJSGlFKUaBVL2WgWR0CdnJkzGgjAdX2UKGgGaAloD0MIIjZYOImFcUCUhpRSlGgVS/JoFkdAnZy8wYcebXV9lChoBmgJaA9DCGZqEryhGXFAlIaUUpRoFUvaaBZHQJ2dzkT6BRR1fZQoaAZoCWgPQwh3gZICCx9xQJSGlFKUaBVL+2gWR0Cdndg4OtnxdX2UKGgGaAloD0MI2XqGcMzHbUCUhpRSlGgVS91oFkdAnZ3mza9K3HV9lChoBmgJaA9DCK5nCMfsMnFAlIaUUpRoFUveaBZHQJ2fvPmgam51fZQoaAZoCWgPQwjxY8xdSxhzQJSGlFKUaBVL7WgWR0CdoAUGmk30dX2UKGgGaAloD0MIIehoVUvSb0CUhpRSlGgVS/FoFkdAnaAqREF4cHV9lChoBmgJaA9DCHalZaTeqnFAlIaUUpRoFUv4aBZHQJ2gehPCVKR1fZQoaAZoCWgPQwieP21UpzJuQJSGlFKUaBVL22gWR0CdoOrHEMspdX2UKGgGaAloD0MIkgThCujgcECUhpRSlGgVTQMBaBZHQJ2g7fqHGjt1fZQoaAZoCWgPQwgqyqXxy0FyQJSGlFKUaBVL7WgWR0CdoWJ8fFJhdX2UKGgGaAloD0MI9z/AWjWBckCUhpRSlGgVS+BoFkdAnaF5/kNnXnV9lChoBmgJaA9DCBsOSwM/43FAlIaUUpRoFUvdaBZHQJ2hgQ7LdN51fZQoaAZoCWgPQwix+47hsf1IQJSGlFKUaBVLoGgWR0CdoZw4bS7YdX2UKGgGaAloD0MI3EsaozULcUCUhpRSlGgVTQEBaBZHQJ2h72Bas6t1fZQoaAZoCWgPQwjVdhN8k19wQJSGlFKUaBVL+GgWR0CdoiFDfFaTdX2UKGgGaAloD0MI1Jy8yARXckCUhpRSlGgVS/ZoFkdAnaI62F36h3V9lChoBmgJaA9DCOoI4GYxuHFAlIaUUpRoFUv/aBZHQJ2iQwg1WKd1fZQoaAZoCWgPQwgQ6EzaVHRyQJSGlFKUaBVL5GgWR0Cdou+EAYHgdX2UKGgGaAloD0MIVg4tsh29b0CUhpRSlGgVS+ZoFkdAnaMQNPP9k3V9lChoBmgJaA9DCBHg9C7ea3FAlIaUUpRoFUveaBZHQJ2k8F+uvEF1fZQoaAZoCWgPQwgEV3kC4UhwQJSGlFKUaBVL6GgWR0CdpO9BKL88dX2UKGgGaAloD0MIWRmNfN50c0CUhpRSlGgVS+1oFkdAnaVym/FirnV9lChoBmgJaA9DCHJtqBinyHFAlIaUUpRoFUvjaBZHQJ2mAVO9FnZ1fZQoaAZoCWgPQwiRup195ZBvQJSGlFKUaBVL5WgWR0CdpgyGi5/cdX2UKGgGaAloD0MIluttM9VscUCUhpRSlGgVS9doFkdAnaY0ETxoZnV9lChoBmgJaA9DCHRfzmwX33FAlIaUUpRoFUv+aBZHQJ2mMyAQQMB1fZQoaAZoCWgPQwgT1sbYSXRwQJSGlFKUaBVL5WgWR0Cdpq33Hq/udX2UKGgGaAloD0MIUg/R6M4Vc0CUhpRSlGgVS9NoFkdAnaa+P3i71HV9lChoBmgJaA9DCNb/OcyXAW9AlIaUUpRoFUvxaBZHQJ2nGtHQQcx1fZQoaAZoCWgPQwhhpu1fGTlzQJSGlFKUaBVL22gWR0Cdp03PiT+vdX2UKGgGaAloD0MIoYLDCyLpcECUhpRSlGgVS91oFkdAnadjXarWAnV9lChoBmgJaA9DCOI9B5bjMHFAlIaUUpRoFUvvaBZHQJ2noPAfuCx1fZQoaAZoCWgPQwjL2TujrThyQJSGlFKUaBVNEgFoFkdAnae35nDiwXV9lChoBmgJaA9DCD85ChAFIm9AlIaUUpRoFUviaBZHQJ2oTqB3A211fZQoaAZoCWgPQwiuSbcl8uRwQJSGlFKUaBVNDQFoFkdAnakSsOoYN3V9lChoBmgJaA9DCHV1x2Kb0G9AlIaUUpRoFUv8aBZHQJ2qzHlwLmZ1fZQoaAZoCWgPQwggCmZMAS1yQJSGlFKUaBVL+GgWR0CdqzxkNFz/dX2UKGgGaAloD0MIsDxITxExcUCUhpRSlGgVS+ZoFkdAnathvegte3V9lChoBmgJaA9DCM3qHW6HIExAlIaUUpRoFUu7aBZHQJ2rXyvs7dV1fZQoaAZoCWgPQwjh1AeSt7xxQJSGlFKUaBVL42gWR0Cdq3eu3c59dX2UKGgGaAloD0MIISBfQsUDcUCUhpRSlGgVS/VoFkdAnavm1hLGrHVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 492,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a6c1423a1cba5d1ab6c511fe05846569176c3225e4fd7bdbd186cc14e7fc864
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ced39e9cdff448729ed8abf0a2d49dcac9b3b704cf317b031d240c504153d22
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42cb204cf64686a2fae9e33b7a6b95d073b35e933633a159282420187d7639ab
|
3 |
+
size 199512
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 286.03579179892387, "std_reward": 16.290812739434, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-17T20:27:54.284720"}
|