|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numbers |
|
from torch import einsum |
|
|
|
from einops import rearrange |
|
from basicsr.utils.nano import psf2otf |
|
|
|
try: |
|
from flash_attn import flash_attn_func |
|
except: |
|
print("Flash attention is required") |
|
raise NotImplementedError |
|
|
|
|
|
def to_3d(x): |
|
return rearrange(x, 'b c h w -> b (h w) c') |
|
|
|
def to_4d(x,h,w): |
|
return rearrange(x, 'b (h w) c -> b c h w',h=h,w=w) |
|
|
|
class BiasFree_LayerNorm(nn.Module): |
|
def __init__(self, normalized_shape): |
|
super(BiasFree_LayerNorm, self).__init__() |
|
if isinstance(normalized_shape, numbers.Integral): |
|
normalized_shape = (normalized_shape,) |
|
normalized_shape = torch.Size(normalized_shape) |
|
|
|
assert len(normalized_shape) == 1 |
|
|
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.normalized_shape = normalized_shape |
|
|
|
def forward(self, x): |
|
sigma = x.var(-1, keepdim=True, unbiased=False) |
|
return x / torch.sqrt(sigma+1e-5) * self.weight |
|
|
|
|
|
class WithBias_LayerNorm(nn.Module): |
|
def __init__(self, normalized_shape): |
|
super(WithBias_LayerNorm, self).__init__() |
|
if isinstance(normalized_shape, numbers.Integral): |
|
normalized_shape = (normalized_shape,) |
|
normalized_shape = torch.Size(normalized_shape) |
|
|
|
assert len(normalized_shape) == 1 |
|
|
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.bias = nn.Parameter(torch.zeros(normalized_shape)) |
|
self.normalized_shape = normalized_shape |
|
|
|
def forward(self, x): |
|
mu = x.mean(-1, keepdim=True) |
|
sigma = x.var(-1, keepdim=True, unbiased=False) |
|
return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, dim, LayerNorm_type): |
|
super(LayerNorm, self).__init__() |
|
if LayerNorm_type =='BiasFree': |
|
self.body = BiasFree_LayerNorm(dim) |
|
else: |
|
self.body = WithBias_LayerNorm(dim) |
|
|
|
def forward(self, x): |
|
h, w = x.shape[-2:] |
|
return to_4d(self.body(to_3d(x)), h, w) |
|
|
|
|
|
|
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, ffn_expansion_factor, bias): |
|
super(FeedForward, self).__init__() |
|
|
|
hidden_features = int(dim*ffn_expansion_factor) |
|
|
|
self.project_in = nn.Conv2d(dim, hidden_features*2, kernel_size=1, bias=bias) |
|
|
|
self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3, stride=1, padding=1, groups=hidden_features*2, bias=bias) |
|
|
|
self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias) |
|
|
|
def forward(self, x): |
|
x = self.project_in(x) |
|
x1, x2 = self.dwconv(x).chunk(2, dim=1) |
|
x = F.gelu(x1) * x2 |
|
x = self.project_out(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads, bias, ksize=0): |
|
super(Attention, self).__init__() |
|
self.num_heads = num_heads |
|
self.ksize = ksize |
|
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) |
|
|
|
self.qkv = nn.Conv2d(dim, dim*3, kernel_size=1, bias=bias) |
|
self.qkv_dwconv = nn.Conv2d(dim*3, dim*3, kernel_size=3, stride=1, padding=1, groups=dim*3, bias=bias) |
|
self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias) |
|
if ksize: |
|
self.avg = torch.nn.AvgPool2d(kernel_size=ksize, stride=1, padding=(ksize-1) //2) |
|
|
|
|
|
def forward(self, x): |
|
b,c,h,w = x.shape |
|
|
|
qkv = self.qkv_dwconv(self.qkv(x)) |
|
q,k,v = qkv.chunk(3, dim=1) |
|
|
|
if self.ksize: |
|
q = q - self.avg(q) |
|
|
|
q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads) |
|
k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads) |
|
v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads) |
|
|
|
q = torch.nn.functional.normalize(q, dim=-1) |
|
k = torch.nn.functional.normalize(k, dim=-1) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.temperature |
|
attn = attn.softmax(dim=-1) |
|
|
|
out = (attn @ v) |
|
|
|
out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w) |
|
|
|
out = self.project_out(out) |
|
return out |
|
|
|
|
|
|
|
|
|
class OverlapPatchEmbed(nn.Module): |
|
def __init__(self, in_c=3, embed_dim=48, bias=False): |
|
super(OverlapPatchEmbed, self).__init__() |
|
|
|
self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=3, stride=1, padding=1, bias=bias) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, n_feat): |
|
super(Downsample, self).__init__() |
|
|
|
self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat//2, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.PixelUnshuffle(2)) |
|
|
|
def forward(self, x): |
|
return self.body(x) |
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, n_feat): |
|
super(Upsample, self).__init__() |
|
|
|
self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat*2, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.PixelShuffle(2)) |
|
|
|
def forward(self, x): |
|
return self.body(x) |
|
|
|
|
|
def to(x): |
|
return {'device': x.device, 'dtype': x.dtype} |
|
|
|
def pair(x): |
|
return (x, x) if not isinstance(x, tuple) else x |
|
|
|
def expand_dim(t, dim, k): |
|
t = t.unsqueeze(dim = dim) |
|
expand_shape = [-1] * len(t.shape) |
|
expand_shape[dim] = k |
|
return t.expand(*expand_shape) |
|
|
|
def rel_to_abs(x): |
|
b, l, m = x.shape |
|
r = (m + 1) // 2 |
|
|
|
col_pad = torch.zeros((b, l, 1), **to(x)) |
|
x = torch.cat((x, col_pad), dim = 2) |
|
flat_x = rearrange(x, 'b l c -> b (l c)') |
|
flat_pad = torch.zeros((b, m - l), **to(x)) |
|
flat_x_padded = torch.cat((flat_x, flat_pad), dim = 1) |
|
final_x = flat_x_padded.reshape(b, l + 1, m) |
|
final_x = final_x[:, :l, -r:] |
|
return final_x |
|
|
|
def relative_logits_1d(q, rel_k): |
|
b, h, w, _ = q.shape |
|
r = (rel_k.shape[0] + 1) // 2 |
|
|
|
logits = einsum('b x y d, r d -> b x y r', q, rel_k) |
|
logits = rearrange(logits, 'b x y r -> (b x) y r') |
|
logits = rel_to_abs(logits) |
|
|
|
logits = logits.reshape(b, h, w, r) |
|
logits = expand_dim(logits, dim = 2, k = r) |
|
return logits |
|
|
|
|
|
class RelPosEmb(nn.Module): |
|
def __init__( |
|
self, |
|
block_size, |
|
rel_size, |
|
dim_head |
|
): |
|
super().__init__() |
|
height = width = rel_size |
|
scale = dim_head ** -0.5 |
|
|
|
self.block_size = block_size |
|
self.rel_height = nn.Parameter(torch.randn(height * 2 - 1, dim_head) * scale) |
|
self.rel_width = nn.Parameter(torch.randn(width * 2 - 1, dim_head) * scale) |
|
|
|
def forward(self, q): |
|
block = self.block_size |
|
|
|
q = rearrange(q, 'b (x y) c -> b x y c', x = block) |
|
rel_logits_w = relative_logits_1d(q, self.rel_width) |
|
rel_logits_w = rearrange(rel_logits_w, 'b x i y j-> b (x y) (i j)') |
|
|
|
q = rearrange(q, 'b x y d -> b y x d') |
|
rel_logits_h = relative_logits_1d(q, self.rel_height) |
|
rel_logits_h = rearrange(rel_logits_h, 'b x i y j -> b (y x) (j i)') |
|
return rel_logits_w + rel_logits_h |
|
|
|
|
|
|
|
|
|
class OCAB(nn.Module): |
|
def __init__(self, dim, window_size, overlap_ratio, num_heads, dim_head, bias, ksize=0): |
|
super(OCAB, self).__init__() |
|
self.num_spatial_heads = num_heads |
|
self.dim = dim |
|
self.window_size = window_size |
|
self.overlap_win_size = int(window_size * overlap_ratio) + window_size |
|
self.dim_head = dim_head |
|
self.inner_dim = self.dim_head * self.num_spatial_heads |
|
self.scale = self.dim_head**-0.5 |
|
self.ksize = ksize |
|
|
|
self.unfold = nn.Unfold(kernel_size=(self.overlap_win_size, self.overlap_win_size), stride=window_size, padding=(self.overlap_win_size-window_size)//2) |
|
self.qkv = nn.Conv2d(self.dim, self.inner_dim*3, kernel_size=1, bias=bias) |
|
self.project_out = nn.Conv2d(self.inner_dim, dim, kernel_size=1, bias=bias) |
|
self.rel_pos_emb = RelPosEmb( |
|
block_size = window_size, |
|
rel_size = window_size + (self.overlap_win_size - window_size), |
|
dim_head = self.dim_head |
|
) |
|
if ksize: |
|
self.avg = torch.nn.AvgPool2d(kernel_size=ksize, stride=1, padding=(ksize-1) //2) |
|
|
|
def forward(self, x): |
|
b, c, h, w = x.shape |
|
|
|
qkv = self.qkv(x) |
|
qs, ks, vs = qkv.chunk(3, dim=1) |
|
|
|
if self.ksize: |
|
qs = qs - self.avg(qs) |
|
|
|
|
|
qs = rearrange(qs, 'b c (h p1) (w p2) -> (b h w) (p1 p2) c', p1 = self.window_size, p2 = self.window_size) |
|
ks, vs = map(lambda t: self.unfold(t), (ks, vs)) |
|
ks, vs = map(lambda t: rearrange(t, 'b (c j) i -> (b i) j c', c = self.inner_dim), (ks, vs)) |
|
|
|
|
|
qs, ks, vs = map(lambda t: rearrange(t, 'b n (head c) -> (b head) n c', head = self.num_spatial_heads), (qs, ks, vs)) |
|
|
|
|
|
qs = qs * self.scale |
|
spatial_attn = (qs @ ks.transpose(-2, -1)) |
|
spatial_attn += self.rel_pos_emb(qs) |
|
spatial_attn = spatial_attn.softmax(dim=-1) |
|
|
|
out = (spatial_attn @ vs) |
|
|
|
out = rearrange(out, '(b h w head) (p1 p2) c -> b (head c) (h p1) (w p2)', head = self.num_spatial_heads, h = h // self.window_size, w = w // self.window_size, p1 = self.window_size, p2 = self.window_size) |
|
|
|
|
|
out = self.project_out(out) |
|
|
|
return out |
|
|
|
|
|
class AttentionFusion(nn.Module): |
|
def __init__(self, dim, bias, channel_fusion): |
|
super(AttentionFusion, self).__init__() |
|
|
|
self.channel_fusion = channel_fusion |
|
self.fusion = nn.Sequential( |
|
nn.Conv2d(dim, dim // 2, kernel_size=1, bias=bias), |
|
nn.GELU(), |
|
nn.Conv2d(dim // 2, dim // 2, kernel_size=1, bias=bias) |
|
) |
|
self.dim = dim // 2 |
|
|
|
def forward(self, x): |
|
fusion_map = self.fusion(x) |
|
if self.channel_fusion: |
|
weight = F.sigmoid(torch.mean(fusion_map, 1, True)) |
|
else: |
|
weight = F.sigmoid(torch.mean(fusion_map, (2,3), True)) |
|
fused_feature = x[:, :self.dim] * weight + x[:, self.dim:] * (1-weight) |
|
return fused_feature |
|
|
|
|
|
|
|
class Transformer_STAF(nn.Module): |
|
def __init__(self, dim, window_size, overlap_ratio, num_channel_heads, num_spatial_heads, spatial_dim_head, ffn_expansion_factor, bias, LayerNorm_type, channel_fusion, query_ksize=0): |
|
super(Transformer_STAF, self).__init__() |
|
|
|
self.spatial_attn = OCAB(dim, window_size, overlap_ratio, num_spatial_heads, spatial_dim_head, bias, ksize=query_ksize) |
|
self.channel_attn = Attention(dim, num_channel_heads, bias, ksize=query_ksize) |
|
|
|
self.norm1 = LayerNorm(dim, LayerNorm_type) |
|
self.norm2 = LayerNorm(dim, LayerNorm_type) |
|
self.norm3 = LayerNorm(dim, LayerNorm_type) |
|
self.norm4 = LayerNorm(dim, LayerNorm_type) |
|
|
|
self.channel_ffn = FeedForward(dim, ffn_expansion_factor, bias) |
|
self.spatial_ffn = FeedForward(dim, ffn_expansion_factor, bias) |
|
|
|
self.fusion = AttentionFusion(dim*2, bias, channel_fusion) |
|
|
|
def forward(self, x): |
|
sa = x + self.spatial_attn(self.norm1(x)) |
|
sa = sa + self.spatial_ffn(self.norm2(sa)) |
|
ca = x + self.channel_attn(self.norm3(x)) |
|
ca = ca + self.channel_ffn(self.norm4(ca)) |
|
fused = self.fusion(torch.cat([sa, ca], 1)) |
|
|
|
return fused |
|
|
|
|
|
class MAFG_CA(nn.Module): |
|
def __init__(self, embed_dim, num_heads, M, window_size=0, eps=1e-6): |
|
super().__init__() |
|
self.M = M |
|
self.Q_idx = M // 2 |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.head_dim = embed_dim // num_heads |
|
self.M = M |
|
self.wsize = window_size |
|
|
|
self.proj_high = nn.Conv2d(3, embed_dim, kernel_size=1) |
|
self.proj_rgb = nn.Conv2d(embed_dim, 3, kernel_size=1) |
|
|
|
self.norm = nn.LayerNorm(embed_dim, eps=eps) |
|
self.qkv = nn.Linear(embed_dim, embed_dim*3, bias=False) |
|
self.proj_out = nn.Linear(embed_dim, embed_dim, bias=False) |
|
self.max_seq = 2**16-1 |
|
|
|
|
|
self.overlap_wsize = int(self.wsize * 0.5) + self.wsize |
|
self.unfold = nn.Unfold(kernel_size=(self.overlap_wsize, self.overlap_wsize), stride=window_size, padding=(self.overlap_wsize-self.wsize)//2) |
|
self.scale = self.embed_dim ** -0.5 |
|
self.pos_emb_q = nn.Parameter(torch.zeros(self.wsize**2, embed_dim)) |
|
self.pos_emb_k = nn.Parameter(torch.zeros(self.overlap_wsize**2, embed_dim)) |
|
nn.init.trunc_normal_(self.pos_emb_q, std=0.02) |
|
nn.init.trunc_normal_(self.pos_emb_k, std=0.02) |
|
|
|
def forward(self, x): |
|
x = self.proj_high(x) |
|
BM,E,H,W = x.shape |
|
|
|
x_seq = x.view(BM,E,-1).permute(0,2,1) |
|
x_seq = self.norm(x_seq) |
|
B = BM // self.M |
|
QKV = self.qkv(x_seq) |
|
QKV = QKV.view(BM, H, W, 3, -1).permute(3,0,4,1,2).contiguous() |
|
Q,K,V = QKV[0], QKV[1], QKV[2] |
|
Q_bm = Q.view(B, self.M, E, H,W) |
|
_Q = Q_bm[:, self.Q_idx:self.Q_idx+1] |
|
Q = torch.stack([__Q.repeat(self.M,1,1,1) for __Q in _Q]).view(BM,E,H,W) |
|
|
|
Q = rearrange(Q, 'b c (h p1) (w p2) -> (b h w) (p1 p2) c', p1 = self.wsize, p2 = self.wsize) |
|
K,V = map(lambda t: self.unfold(t), (K,V)) |
|
if K.shape[-1] > 10000: |
|
b,_,pp = K.shape |
|
K = K.view(b,self.embed_dim,-1,pp).permute(0,3,2,1).reshape(b*pp,-1,self.embed_dim) |
|
V = V.view(b,self.embed_dim,-1,pp).permute(0,3,2,1).reshape(b*pp,-1,self.embed_dim) |
|
else: |
|
K,V = map(lambda t: rearrange(t, 'b (c j) i -> (b i) j c', c = self.embed_dim), (K,V)) |
|
|
|
|
|
Q = Q + self.pos_emb_q |
|
K = K + self.pos_emb_k |
|
|
|
s, eq, _ = Q.shape |
|
_, ek, _ = K.shape |
|
Q = Q.view(s, eq, self.num_heads,self.head_dim).half() |
|
K = K.view(s, ek, self.num_heads,self.head_dim).half() |
|
V = V.view(s, ek, self.num_heads,self.head_dim).half() |
|
if s > self.max_seq: |
|
outs = [] |
|
sp = self.max_seq |
|
_max = s // sp + 1 |
|
for i in range(_max): |
|
outs.append(flash_attn_func(Q[i*sp: (i+1)*sp], K[i*sp: (i+1)*sp], V[i*sp: (i+1)*sp], causal=False)) |
|
out = torch.cat(outs).to(torch.float32) |
|
else: |
|
out = flash_attn_func(Q, K, V, causal=False).to(torch.float32) |
|
out = rearrange(out, '(b nh nw) (ph pw) h d -> b (nh ph nw pw) (h d)', nh=H//self.wsize, nw=W//self.wsize, ph=self.wsize, pw=self.wsize) |
|
out = self.proj_out(out) |
|
|
|
mixed_feature = out.view(BM,H,W,E).permute(0,3,1,2).contiguous() + x |
|
return self.proj_rgb(mixed_feature).reshape(B,-1,H,W) |
|
|
|
|
|
|
|
|
|
class ACFormer(nn.Module): |
|
def __init__(self, |
|
inp_channels=3, |
|
out_channels=3, |
|
dim = 48, |
|
num_blocks = [4,6,6,8], |
|
num_refinement_blocks = 4, |
|
channel_heads = [1,2,4,8], |
|
spatial_heads = [2,2,3,4], |
|
overlap_ratio=[0.5, 0.5, 0.5, 0.5], |
|
window_size = 8, |
|
spatial_dim_head = 16, |
|
bias = False, |
|
ffn_expansion_factor = 2.66, |
|
LayerNorm_type = 'WithBias', |
|
M=13, |
|
ca_heads=2, |
|
ca_dim=32, |
|
window_size_ca=0, |
|
query_ksize=None |
|
): |
|
|
|
super(ACFormer, self).__init__() |
|
self.center_idx = M // 2 |
|
self.ca = MAFG_CA(embed_dim=ca_dim, num_heads=ca_heads, M=M, window_size=window_size_ca) |
|
self.patch_embed = OverlapPatchEmbed(inp_channels, dim) |
|
|
|
self.encoder_level1 = nn.Sequential(*[Transformer_STAF(dim=dim, window_size = window_size, overlap_ratio=overlap_ratio[0], num_channel_heads=channel_heads[0], num_spatial_heads=spatial_heads[0], spatial_dim_head = spatial_dim_head, ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, channel_fusion=False, query_ksize=0) for i in range(num_blocks[0])]) |
|
|
|
self.down1_2 = Downsample(dim) |
|
self.encoder_level2 = nn.Sequential(*[Transformer_STAF(dim=int(dim*2**1), window_size = window_size, overlap_ratio=overlap_ratio[1], num_channel_heads=channel_heads[1], num_spatial_heads=spatial_heads[1], spatial_dim_head = spatial_dim_head, ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, channel_fusion=False, query_ksize=0) for i in range(num_blocks[1])]) |
|
|
|
self.down2_3 = Downsample(int(dim*2**1)) |
|
self.encoder_level3 = nn.Sequential(*[Transformer_STAF(dim=int(dim*2**2), window_size = window_size, overlap_ratio=overlap_ratio[2], num_channel_heads=channel_heads[2], num_spatial_heads=spatial_heads[2], spatial_dim_head = spatial_dim_head, ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, channel_fusion=False, query_ksize=0) for i in range(num_blocks[2])]) |
|
|
|
self.down3_4 = Downsample(int(dim*2**2)) |
|
self.latent = nn.Sequential(*[Transformer_STAF(dim=int(dim*2**3), window_size = window_size, overlap_ratio=overlap_ratio[3], num_channel_heads=channel_heads[3], num_spatial_heads=spatial_heads[3], spatial_dim_head = spatial_dim_head, ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, channel_fusion=False, query_ksize=query_ksize[0] if i % 2 == 1 else 0) for i in range(num_blocks[3])]) |
|
|
|
self.up4_3 = Upsample(int(dim*2**3)) |
|
self.reduce_chan_level3 = nn.Conv2d(int(dim*2**3), int(dim*2**2), kernel_size=1, bias=bias) |
|
self.decoder_level3 = nn.Sequential(*[Transformer_STAF(dim=int(dim*2**2), window_size = window_size, overlap_ratio=overlap_ratio[2], num_channel_heads=channel_heads[2], num_spatial_heads=spatial_heads[2], spatial_dim_head = spatial_dim_head, ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, channel_fusion=True, query_ksize=query_ksize[1] if i % 2 == 1 else 0) for i in range(num_blocks[2])]) |
|
|
|
self.up3_2 = Upsample(int(dim*2**2)) |
|
self.reduce_chan_level2 = nn.Conv2d(int(dim*2**2), int(dim*2**1), kernel_size=1, bias=bias) |
|
self.decoder_level2 = nn.Sequential(*[Transformer_STAF(dim=int(dim*2**1), window_size = window_size, overlap_ratio=overlap_ratio[1], num_channel_heads=channel_heads[1], num_spatial_heads=spatial_heads[1], spatial_dim_head = spatial_dim_head, ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, channel_fusion=True, query_ksize=query_ksize[2] if i % 2 == 1 else 0) for i in range(num_blocks[1])]) |
|
|
|
self.up2_1 = Upsample(int(dim*2**1)) |
|
|
|
self.decoder_level1 = nn.Sequential(*[Transformer_STAF(dim=int(dim*2**1), window_size = window_size, overlap_ratio=overlap_ratio[0], num_channel_heads=channel_heads[0], num_spatial_heads=spatial_heads[0], spatial_dim_head = spatial_dim_head, ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, channel_fusion=True, query_ksize=query_ksize[3] if i % 2 == 1 else 0) for i in range(num_blocks[0])]) |
|
|
|
self.refinement = nn.Sequential(*[Transformer_STAF(dim=int(dim*2**1), window_size = window_size, overlap_ratio=overlap_ratio[0], num_channel_heads=channel_heads[0], num_spatial_heads=spatial_heads[0], spatial_dim_head = spatial_dim_head, ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, channel_fusion=True, query_ksize=query_ksize[4] if i % 2 == 1 else 0) for i in range(num_refinement_blocks)]) |
|
|
|
self.output = nn.Conv2d(int(dim*2**1), out_channels, kernel_size=3, stride=1, padding=1, bias=bias) |
|
|
|
def forward(self, inp_img): |
|
if inp_img.ndim == 5: |
|
B,M,C,H,W = inp_img.shape |
|
center_img = inp_img[:, self.center_idx] |
|
inp_img = inp_img.view(B*M,C,H,W).contiguous() |
|
else: |
|
center_img = inp_img |
|
|
|
if self.ca is None: |
|
inp_enc_level1 = inp_img.view(B,M*C,H,W) |
|
else: |
|
inp_enc_level1 = self.ca(inp_img) |
|
|
|
inp_enc_level1 = self.patch_embed(inp_enc_level1) |
|
|
|
out_enc_level1 = self.encoder_level1(inp_enc_level1) |
|
|
|
inp_enc_level2 = self.down1_2(out_enc_level1) |
|
out_enc_level2 = self.encoder_level2(inp_enc_level2) |
|
|
|
inp_enc_level3 = self.down2_3(out_enc_level2) |
|
out_enc_level3 = self.encoder_level3(inp_enc_level3) |
|
|
|
inp_enc_level4 = self.down3_4(out_enc_level3) |
|
latent = self.latent(inp_enc_level4) |
|
|
|
inp_dec_level3 = self.up4_3(latent) |
|
inp_dec_level3 = torch.cat([inp_dec_level3, out_enc_level3], 1) |
|
inp_dec_level3 = self.reduce_chan_level3(inp_dec_level3) |
|
out_dec_level3 = self.decoder_level3(inp_dec_level3) |
|
|
|
inp_dec_level2 = self.up3_2(out_dec_level3) |
|
inp_dec_level2 = torch.cat([inp_dec_level2, out_enc_level2], 1) |
|
inp_dec_level2 = self.reduce_chan_level2(inp_dec_level2) |
|
out_dec_level2 = self.decoder_level2(inp_dec_level2) |
|
|
|
inp_dec_level1 = self.up2_1(out_dec_level2) |
|
inp_dec_level1 = torch.cat([inp_dec_level1, out_enc_level1], 1) |
|
out_dec_level1 = self.decoder_level1(inp_dec_level1) |
|
|
|
|
|
out_dec_level1 = self.refinement(out_dec_level1) |
|
out_dec_level1 = self.output(out_dec_level1) + center_img |
|
|
|
return out_dec_level1 |