blackwingedkite commited on
Commit
c448da8
·
1 Parent(s): 785a186

Upload 12 files

Browse files
MODEL_LICENSE.txt ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The ChatGLM2-6B License
2
+
3
+ 1. 定义
4
+
5
+ “许可方”是指分发其软件的 ChatGLM2-6B 模型团队。
6
+
7
+ “软件”是指根据本许可提供的 ChatGLM2-6B 模型参数。
8
+
9
+ 2. 许可授予
10
+
11
+ 根据本许可的条款和条件,许可方特此授予您非排他性、全球性、不可转让、不可再许可、可撤销、免版税的版权许可。
12
+
13
+ 上述版权声明和本许可声明应包含在本软件的所有副本或重要部分中。
14
+
15
+ 3.限制
16
+
17
+ 您不得出于任何军事或非法目的使用、复制、修改、合并、发布、分发、复制或创建本软件的全部或部分衍生作品。
18
+
19
+ 您不得利用本软件从事任何危害国家安全和国家统一、危害社会公共利益、侵犯人身权益的行为。
20
+
21
+ 4.免责声明
22
+
23
+ 本软件“按原样”提供,不提供任何明示或暗示的保证,包括但不限于对适销性、特定用途的适用性和非侵权性的保证。 在任何情况下,作者或版权持有人均不对任何索赔、损害或其他责任负责,无论是在合同诉讼、侵权行为还是其他方面,由软件或软件的使用或其他交易引起、由软件引起或与之相关 软件。
24
+
25
+ 5. 责任限制
26
+
27
+ 除适用法律禁止的范围外,在任何情况下且根据任何法律理论,无论是基于侵权行为、疏忽、合同、责任或其他原因,任何许可方均不对您承担任何直接、间接、特殊、偶然、示范性、 或间接损害,或任何其他商业损失,即使许可人已被告知此类损害的可能性。
28
+
29
+ 6.争议解决
30
+
31
+ 本许可受中华人民共和国法律管辖并按其解释。 因本许可引起的或与本许可有关的任何争议应提交北京市海淀区人民法院。
32
+
33
+ 请注意,许可证可能会更新到更全面的版本。 有关许可和版权的任何问题,请通过 license@zhipuai.cn 与我们联系。
34
+
35
+ 1. Definitions
36
+
37
+ “Licensor” means the ChatGLM2-6B Model Team that distributes its Software.
38
+
39
+ “Software” means the ChatGLM2-6B model parameters made available under this license.
40
+
41
+ 2. License Grant
42
+
43
+ Subject to the terms and conditions of this License, the Licensor hereby grants to you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty-free copyright license to use the Software.
44
+
45
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
46
+
47
+ 3. Restriction
48
+
49
+ You will not use, copy, modify, merge, publish, distribute, reproduce, or create derivative works of the Software, in whole or in part, for any military, or illegal purposes.
50
+
51
+ You will not use the Software for any act that may undermine China's national security and national unity, harm the public interest of society, or infringe upon the rights and interests of human beings.
52
+
53
+ 4. Disclaimer
54
+
55
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
56
+
57
+ 5. Limitation of Liability
58
+
59
+ EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER BASED IN TORT, NEGLIGENCE, CONTRACT, LIABILITY, OR OTHERWISE WILL ANY LICENSOR BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER COMMERCIAL LOSSES, EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
60
+
61
+ 6. Dispute Resolution
62
+
63
+ This license shall be governed and construed in accordance with the laws of People’s Republic of China. Any dispute arising from or in connection with this License shall be submitted to Haidian District People's Court in Beijing.
64
+
65
+ Note that the license is subject to update to a more comprehensive version. For any questions related to the license and copyright, please contact us at license@zhipuai.cn.
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "THUDM/chatglm2-6b",
3
+ "add_bias_linear": false,
4
+ "add_qkv_bias": true,
5
+ "apply_query_key_layer_scaling": true,
6
+ "apply_residual_connection_post_layernorm": false,
7
+ "architectures": [
8
+ "ChatGLMForConditionalGeneration"
9
+ ],
10
+ "attention_dropout": 0.0,
11
+ "attention_softmax_in_fp32": true,
12
+ "auto_map": {
13
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
14
+ "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
15
+ "AutoModelForCausalLM": "THUDM/chatglm2-6b--modeling_chatglm.ChatGLMForConditionalGeneration",
16
+ "AutoModelForSeq2SeqLM": "THUDM/chatglm2-6b--modeling_chatglm.ChatGLMForConditionalGeneration",
17
+ "AutoModelForSequenceClassification": "THUDM/chatglm2-6b--modeling_chatglm.ChatGLMForSequenceClassification"
18
+ },
19
+ "bias_dropout_fusion": true,
20
+ "classifier_dropout": null,
21
+ "eos_token_id": 2,
22
+ "ffn_hidden_size": 13696,
23
+ "fp32_residual_connection": false,
24
+ "hidden_dropout": 0.0,
25
+ "hidden_size": 4096,
26
+ "kv_channels": 128,
27
+ "layernorm_epsilon": 1e-05,
28
+ "model_type": "chatglm",
29
+ "multi_query_attention": true,
30
+ "multi_query_group_num": 2,
31
+ "num_attention_heads": 32,
32
+ "num_layers": 28,
33
+ "original_rope": true,
34
+ "pad_token_id": 0,
35
+ "padded_vocab_size": 65024,
36
+ "post_layer_norm": true,
37
+ "pre_seq_len": null,
38
+ "prefix_projection": false,
39
+ "quantization_bit": 0,
40
+ "rmsnorm": true,
41
+ "seq_length": 32768,
42
+ "tie_word_embeddings": false,
43
+ "torch_dtype": "float32",
44
+ "transformers_version": "4.33.2",
45
+ "use_cache": true,
46
+ "vocab_size": 65024
47
+ }
configuration_chatglm.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class ChatGLMConfig(PretrainedConfig):
5
+ model_type = "chatglm"
6
+ def __init__(
7
+ self,
8
+ num_layers=28,
9
+ padded_vocab_size=65024,
10
+ hidden_size=4096,
11
+ ffn_hidden_size=13696,
12
+ kv_channels=128,
13
+ num_attention_heads=32,
14
+ seq_length=2048,
15
+ hidden_dropout=0.0,
16
+ classifier_dropout=None,
17
+ attention_dropout=0.0,
18
+ layernorm_epsilon=1e-5,
19
+ rmsnorm=True,
20
+ apply_residual_connection_post_layernorm=False,
21
+ post_layer_norm=True,
22
+ add_bias_linear=False,
23
+ add_qkv_bias=False,
24
+ bias_dropout_fusion=True,
25
+ multi_query_attention=False,
26
+ multi_query_group_num=1,
27
+ apply_query_key_layer_scaling=True,
28
+ attention_softmax_in_fp32=True,
29
+ fp32_residual_connection=False,
30
+ quantization_bit=0,
31
+ pre_seq_len=None,
32
+ prefix_projection=False,
33
+ **kwargs
34
+ ):
35
+ self.num_layers = num_layers
36
+ self.vocab_size = padded_vocab_size
37
+ self.padded_vocab_size = padded_vocab_size
38
+ self.hidden_size = hidden_size
39
+ self.ffn_hidden_size = ffn_hidden_size
40
+ self.kv_channels = kv_channels
41
+ self.num_attention_heads = num_attention_heads
42
+ self.seq_length = seq_length
43
+ self.hidden_dropout = hidden_dropout
44
+ self.classifier_dropout = classifier_dropout
45
+ self.attention_dropout = attention_dropout
46
+ self.layernorm_epsilon = layernorm_epsilon
47
+ self.rmsnorm = rmsnorm
48
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
49
+ self.post_layer_norm = post_layer_norm
50
+ self.add_bias_linear = add_bias_linear
51
+ self.add_qkv_bias = add_qkv_bias
52
+ self.bias_dropout_fusion = bias_dropout_fusion
53
+ self.multi_query_attention = multi_query_attention
54
+ self.multi_query_group_num = multi_query_group_num
55
+ self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
56
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
57
+ self.fp32_residual_connection = fp32_residual_connection
58
+ self.quantization_bit = quantization_bit
59
+ self.pre_seq_len = pre_seq_len
60
+ self.prefix_projection = prefix_projection
61
+ super().__init__(**kwargs)
flowchart V2.png ADDED
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": 2,
4
+ "pad_token_id": 0,
5
+ "transformers_version": "4.33.2"
6
+ }
modeling_chatglm.py ADDED
@@ -0,0 +1,1281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+
3
+ import math
4
+ import copy
5
+ import warnings
6
+ import re
7
+ import sys
8
+
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ import torch.nn.functional as F
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss, LayerNorm
14
+ from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
15
+ from torch.nn.utils import skip_init
16
+ from typing import Optional, Tuple, Union, List, Callable, Dict, Any
17
+
18
+ from transformers.modeling_outputs import (
19
+ BaseModelOutputWithPast,
20
+ CausalLMOutputWithPast,
21
+ SequenceClassifierOutputWithPast,
22
+ )
23
+ from transformers.modeling_utils import PreTrainedModel
24
+ from transformers.utils import logging
25
+ from transformers.generation.logits_process import LogitsProcessor
26
+ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
27
+
28
+ from .configuration_chatglm import ChatGLMConfig
29
+
30
+ # flags required to enable jit fusion kernels
31
+
32
+ if sys.platform != 'darwin':
33
+ torch._C._jit_set_profiling_mode(False)
34
+ torch._C._jit_set_profiling_executor(False)
35
+ torch._C._jit_override_can_fuse_on_cpu(True)
36
+ torch._C._jit_override_can_fuse_on_gpu(True)
37
+
38
+ logger = logging.get_logger(__name__)
39
+
40
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM2-6B"
41
+ _CONFIG_FOR_DOC = "ChatGLM6BConfig"
42
+
43
+ CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
44
+ "THUDM/chatglm2-6b",
45
+ # See all ChatGLM models at https://huggingface.co/models?filter=chatglm
46
+ ]
47
+
48
+
49
+ def default_init(cls, *args, **kwargs):
50
+ return cls(*args, **kwargs)
51
+
52
+
53
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
54
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
55
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
56
+ scores.zero_()
57
+ scores[..., 5] = 5e4
58
+ return scores
59
+
60
+
61
+ class PrefixEncoder(torch.nn.Module):
62
+ """
63
+ The torch.nn model to encode the prefix
64
+ Input shape: (batch-size, prefix-length)
65
+ Output shape: (batch-size, prefix-length, 2*layers*hidden)
66
+ """
67
+
68
+ def __init__(self, config: ChatGLMConfig):
69
+ super().__init__()
70
+ self.prefix_projection = config.prefix_projection
71
+ if self.prefix_projection:
72
+ # Use a two-layer MLP to encode the prefix
73
+ kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
74
+ self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
75
+ self.trans = torch.nn.Sequential(
76
+ torch.nn.Linear(kv_size, config.hidden_size),
77
+ torch.nn.Tanh(),
78
+ torch.nn.Linear(config.hidden_size, kv_size)
79
+ )
80
+ else:
81
+ self.embedding = torch.nn.Embedding(config.pre_seq_len,
82
+ config.num_layers * config.kv_channels * config.multi_query_group_num * 2)
83
+
84
+ def forward(self, prefix: torch.Tensor):
85
+ if self.prefix_projection:
86
+ prefix_tokens = self.embedding(prefix)
87
+ past_key_values = self.trans(prefix_tokens)
88
+ else:
89
+ past_key_values = self.embedding(prefix)
90
+ return past_key_values
91
+
92
+
93
+ def split_tensor_along_last_dim(
94
+ tensor: torch.Tensor,
95
+ num_partitions: int,
96
+ contiguous_split_chunks: bool = False,
97
+ ) -> List[torch.Tensor]:
98
+ """Split a tensor along its last dimension.
99
+
100
+ Arguments:
101
+ tensor: input tensor.
102
+ num_partitions: number of partitions to split the tensor
103
+ contiguous_split_chunks: If True, make each chunk contiguous
104
+ in memory.
105
+
106
+ Returns:
107
+ A list of Tensors
108
+ """
109
+ # Get the size and dimension.
110
+ last_dim = tensor.dim() - 1
111
+ last_dim_size = tensor.size()[last_dim] // num_partitions
112
+ # Split.
113
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
114
+ # Note: torch.split does not create contiguous tensors by default.
115
+ if contiguous_split_chunks:
116
+ return tuple(chunk.contiguous() for chunk in tensor_list)
117
+
118
+ return tensor_list
119
+
120
+
121
+ class RotaryEmbedding(nn.Module):
122
+ def __init__(self, dim, original_impl=False, device=None, dtype=None):
123
+ super().__init__()
124
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
125
+ self.register_buffer("inv_freq", inv_freq)
126
+ self.dim = dim
127
+ self.original_impl = original_impl
128
+
129
+ def forward_impl(
130
+ self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
131
+ ):
132
+ """Enhanced Transformer with Rotary Position Embedding.
133
+
134
+ Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
135
+ transformers/rope/__init__.py. MIT License:
136
+ https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
137
+ """
138
+ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
139
+ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem))
140
+
141
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
142
+ seq_idx = torch.arange(seq_len, dtype=dtype, device=device)
143
+
144
+ # Calculate the product of position index and $\theta_i$
145
+ idx_theta = torch.outer(seq_idx, theta).float()
146
+
147
+ cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
148
+
149
+ # this is to mimic the behaviour of complex32, else we will get different results
150
+ if dtype in (torch.float16, torch.bfloat16, torch.int8):
151
+ cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
152
+ return cache
153
+
154
+ def forward(self, max_seq_len, offset=0):
155
+ return self.forward_impl(
156
+ max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
157
+ )
158
+
159
+
160
+ @torch.jit.script
161
+ def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
162
+ # x: [sq, b, np, hn]
163
+ sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
164
+ rot_dim = rope_cache.shape[-2] * 2
165
+ x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
166
+ # truncate to support variable sizes
167
+ rope_cache = rope_cache[:sq]
168
+ xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
169
+ rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
170
+ x_out2 = torch.stack(
171
+ [
172
+ xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
173
+ xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
174
+ ],
175
+ -1,
176
+ )
177
+ x_out2 = x_out2.flatten(3)
178
+ return torch.cat((x_out2, x_pass), dim=-1)
179
+
180
+
181
+ class RMSNorm(torch.nn.Module):
182
+ def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
183
+ super().__init__()
184
+ self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
185
+ self.eps = eps
186
+
187
+ def forward(self, hidden_states: torch.Tensor):
188
+ input_dtype = hidden_states.dtype
189
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
190
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
191
+
192
+ return (self.weight * hidden_states).to(input_dtype)
193
+
194
+
195
+ class CoreAttention(torch.nn.Module):
196
+ def __init__(self, config: ChatGLMConfig, layer_number):
197
+ super(CoreAttention, self).__init__()
198
+
199
+ self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
200
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
201
+ if self.apply_query_key_layer_scaling:
202
+ self.attention_softmax_in_fp32 = True
203
+ self.layer_number = max(1, layer_number)
204
+
205
+ projection_size = config.kv_channels * config.num_attention_heads
206
+
207
+ # Per attention head and per partition values.
208
+ self.hidden_size_per_partition = projection_size
209
+ self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
210
+ self.num_attention_heads_per_partition = config.num_attention_heads
211
+
212
+ coeff = None
213
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
214
+ if self.apply_query_key_layer_scaling:
215
+ coeff = self.layer_number
216
+ self.norm_factor *= coeff
217
+ self.coeff = coeff
218
+
219
+ self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
220
+
221
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
222
+ pytorch_major_version = int(torch.__version__.split('.')[0])
223
+ if pytorch_major_version >= 2:
224
+ query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
225
+ if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
226
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
227
+ is_causal=True)
228
+ else:
229
+ if attention_mask is not None:
230
+ attention_mask = ~attention_mask
231
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
232
+ attention_mask)
233
+ context_layer = context_layer.permute(2, 0, 1, 3)
234
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
235
+ context_layer = context_layer.reshape(*new_context_layer_shape)
236
+ else:
237
+ # Raw attention scores
238
+
239
+ # [b, np, sq, sk]
240
+ output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
241
+
242
+ # [sq, b, np, hn] -> [sq, b * np, hn]
243
+ query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
244
+ # [sk, b, np, hn] -> [sk, b * np, hn]
245
+ key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
246
+
247
+ # preallocting input tensor: [b * np, sq, sk]
248
+ matmul_input_buffer = torch.empty(
249
+ output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
250
+ device=query_layer.device
251
+ )
252
+
253
+ # Raw attention scores. [b * np, sq, sk]
254
+ matmul_result = torch.baddbmm(
255
+ matmul_input_buffer,
256
+ query_layer.transpose(0, 1), # [b * np, sq, hn]
257
+ key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
258
+ beta=0.0,
259
+ alpha=(1.0 / self.norm_factor),
260
+ )
261
+
262
+ # change view to [b, np, sq, sk]
263
+ attention_scores = matmul_result.view(*output_size)
264
+
265
+ # ===========================
266
+ # Attention probs and dropout
267
+ # ===========================
268
+
269
+ # attention scores and attention mask [b, np, sq, sk]
270
+ if self.attention_softmax_in_fp32:
271
+ attention_scores = attention_scores.float()
272
+ if self.coeff is not None:
273
+ attention_scores = attention_scores * self.coeff
274
+ if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
275
+ attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
276
+ device=attention_scores.device, dtype=torch.bool)
277
+ attention_mask.tril_()
278
+ attention_mask = ~attention_mask
279
+ if attention_mask is not None:
280
+ attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
281
+ attention_probs = F.softmax(attention_scores, dim=-1)
282
+ attention_probs = attention_probs.type_as(value_layer)
283
+
284
+ # This is actually dropping out entire tokens to attend to, which might
285
+ # seem a bit unusual, but is taken from the original Transformer paper.
286
+ attention_probs = self.attention_dropout(attention_probs)
287
+ # =========================
288
+ # Context layer. [sq, b, hp]
289
+ # =========================
290
+
291
+ # value_layer -> context layer.
292
+ # [sk, b, np, hn] --> [b, np, sq, hn]
293
+
294
+ # context layer shape: [b, np, sq, hn]
295
+ output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
296
+ # change view [sk, b * np, hn]
297
+ value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
298
+ # change view [b * np, sq, sk]
299
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
300
+ # matmul: [b * np, sq, hn]
301
+ context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
302
+ # change view [b, np, sq, hn]
303
+ context_layer = context_layer.view(*output_size)
304
+ # [b, np, sq, hn] --> [sq, b, np, hn]
305
+ context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
306
+ # [sq, b, np, hn] --> [sq, b, hp]
307
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
308
+ context_layer = context_layer.view(*new_context_layer_shape)
309
+
310
+ return context_layer
311
+
312
+
313
+ class SelfAttention(torch.nn.Module):
314
+ """Parallel self-attention layer abstract class.
315
+
316
+ Self-attention layer takes input with size [s, b, h]
317
+ and returns output of the same size.
318
+ """
319
+
320
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
321
+ super(SelfAttention, self).__init__()
322
+ self.layer_number = max(1, layer_number)
323
+
324
+ self.projection_size = config.kv_channels * config.num_attention_heads
325
+
326
+ # Per attention head and per partition values.
327
+ self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
328
+ self.num_attention_heads_per_partition = config.num_attention_heads
329
+
330
+ self.multi_query_attention = config.multi_query_attention
331
+ self.qkv_hidden_size = 3 * self.projection_size
332
+ if self.multi_query_attention:
333
+ self.num_multi_query_groups_per_partition = config.multi_query_group_num
334
+ self.qkv_hidden_size = (
335
+ self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
336
+ )
337
+ self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
338
+ bias=config.add_bias_linear or config.add_qkv_bias,
339
+ device=device, **_config_to_kwargs(config)
340
+ )
341
+
342
+ self.core_attention = CoreAttention(config, self.layer_number)
343
+
344
+ # Output.
345
+ self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
346
+ device=device, **_config_to_kwargs(config)
347
+ )
348
+
349
+ def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
350
+ if self.multi_query_attention:
351
+ num_attention_heads = self.num_multi_query_groups_per_partition
352
+ else:
353
+ num_attention_heads = self.num_attention_heads_per_partition
354
+ return torch.empty(
355
+ inference_max_sequence_len,
356
+ batch_size,
357
+ num_attention_heads,
358
+ self.hidden_size_per_attention_head,
359
+ dtype=dtype,
360
+ device=device,
361
+ )
362
+
363
+ def forward(
364
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
365
+ ):
366
+ # hidden_states: [sq, b, h]
367
+
368
+ # =================================================
369
+ # Pre-allocate memory for key-values for inference.
370
+ # =================================================
371
+ # =====================
372
+ # Query, Key, and Value
373
+ # =====================
374
+
375
+ # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
376
+ mixed_x_layer = self.query_key_value(hidden_states)
377
+
378
+ if self.multi_query_attention:
379
+ (query_layer, key_layer, value_layer) = mixed_x_layer.split(
380
+ [
381
+ self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
382
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
383
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
384
+ ],
385
+ dim=-1,
386
+ )
387
+ query_layer = query_layer.view(
388
+ query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
389
+ )
390
+ key_layer = key_layer.view(
391
+ key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
392
+ )
393
+ value_layer = value_layer.view(
394
+ value_layer.size()[:-1]
395
+ + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
396
+ )
397
+ else:
398
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
399
+ (self.num_attention_heads_per_partition,
400
+ 3 * self.hidden_size_per_attention_head)
401
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
402
+
403
+ # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
404
+ (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
405
+
406
+ # apply relative positional encoding (rotary embedding)
407
+ if rotary_pos_emb is not None:
408
+ query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
409
+ key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
410
+
411
+ # adjust key and value for inference
412
+ if kv_cache is not None:
413
+ cache_k, cache_v = kv_cache
414
+ key_layer = torch.cat((cache_k, key_layer), dim=0)
415
+ value_layer = torch.cat((cache_v, value_layer), dim=0)
416
+ if use_cache:
417
+ kv_cache = (key_layer, value_layer)
418
+ else:
419
+ kv_cache = None
420
+
421
+ if self.multi_query_attention:
422
+ key_layer = key_layer.unsqueeze(-2)
423
+ key_layer = key_layer.expand(
424
+ -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
425
+ )
426
+ key_layer = key_layer.contiguous().view(
427
+ key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
428
+ )
429
+ value_layer = value_layer.unsqueeze(-2)
430
+ value_layer = value_layer.expand(
431
+ -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
432
+ )
433
+ value_layer = value_layer.contiguous().view(
434
+ value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
435
+ )
436
+
437
+ # ==================================
438
+ # core attention computation
439
+ # ==================================
440
+
441
+ context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
442
+
443
+ # =================
444
+ # Output. [sq, b, h]
445
+ # =================
446
+
447
+ output = self.dense(context_layer)
448
+
449
+ return output, kv_cache
450
+
451
+
452
+ def _config_to_kwargs(args):
453
+ common_kwargs = {
454
+ "dtype": args.torch_dtype,
455
+ }
456
+ return common_kwargs
457
+
458
+
459
+ class MLP(torch.nn.Module):
460
+ """MLP.
461
+
462
+ MLP will take the input with h hidden state, project it to 4*h
463
+ hidden dimension, perform nonlinear transformation, and project the
464
+ state back into h hidden dimension.
465
+ """
466
+
467
+ def __init__(self, config: ChatGLMConfig, device=None):
468
+ super(MLP, self).__init__()
469
+
470
+ self.add_bias = config.add_bias_linear
471
+
472
+ # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
473
+ self.dense_h_to_4h = nn.Linear(
474
+ config.hidden_size,
475
+ config.ffn_hidden_size * 2,
476
+ bias=self.add_bias,
477
+ device=device,
478
+ **_config_to_kwargs(config)
479
+ )
480
+
481
+ def swiglu(x):
482
+ x = torch.chunk(x, 2, dim=-1)
483
+ return F.silu(x[0]) * x[1]
484
+
485
+ self.activation_func = swiglu
486
+
487
+ # Project back to h.
488
+ self.dense_4h_to_h = nn.Linear(
489
+ config.ffn_hidden_size,
490
+ config.hidden_size,
491
+ bias=self.add_bias,
492
+ device=device,
493
+ **_config_to_kwargs(config)
494
+ )
495
+
496
+ def forward(self, hidden_states):
497
+ # [s, b, 4hp]
498
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
499
+ intermediate_parallel = self.activation_func(intermediate_parallel)
500
+ # [s, b, h]
501
+ output = self.dense_4h_to_h(intermediate_parallel)
502
+ return output
503
+
504
+
505
+ class GLMBlock(torch.nn.Module):
506
+ """A single transformer layer.
507
+
508
+ Transformer layer takes input with size [s, b, h] and returns an
509
+ output of the same size.
510
+ """
511
+
512
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
513
+ super(GLMBlock, self).__init__()
514
+ self.layer_number = layer_number
515
+
516
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
517
+
518
+ self.fp32_residual_connection = config.fp32_residual_connection
519
+
520
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
521
+ # Layernorm on the input data.
522
+ self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
523
+ dtype=config.torch_dtype)
524
+
525
+ # Self attention.
526
+ self.self_attention = SelfAttention(config, layer_number, device=device)
527
+ self.hidden_dropout = config.hidden_dropout
528
+
529
+ # Layernorm on the attention output
530
+ self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
531
+ dtype=config.torch_dtype)
532
+
533
+ # MLP
534
+ self.mlp = MLP(config, device=device)
535
+
536
+ def forward(
537
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
538
+ ):
539
+ # hidden_states: [s, b, h]
540
+
541
+ # Layer norm at the beginning of the transformer layer.
542
+ layernorm_output = self.input_layernorm(hidden_states)
543
+ # Self attention.
544
+ attention_output, kv_cache = self.self_attention(
545
+ layernorm_output,
546
+ attention_mask,
547
+ rotary_pos_emb,
548
+ kv_cache=kv_cache,
549
+ use_cache=use_cache
550
+ )
551
+
552
+ # Residual connection.
553
+ if self.apply_residual_connection_post_layernorm:
554
+ residual = layernorm_output
555
+ else:
556
+ residual = hidden_states
557
+
558
+ layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
559
+ layernorm_input = residual + layernorm_input
560
+
561
+ # Layer norm post the self attention.
562
+ layernorm_output = self.post_attention_layernorm(layernorm_input)
563
+
564
+ # MLP.
565
+ mlp_output = self.mlp(layernorm_output)
566
+
567
+ # Second residual connection.
568
+ if self.apply_residual_connection_post_layernorm:
569
+ residual = layernorm_output
570
+ else:
571
+ residual = layernorm_input
572
+
573
+ output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
574
+ output = residual + output
575
+
576
+ return output, kv_cache
577
+
578
+
579
+ class GLMTransformer(torch.nn.Module):
580
+ """Transformer class."""
581
+
582
+ def __init__(self, config: ChatGLMConfig, device=None):
583
+ super(GLMTransformer, self).__init__()
584
+
585
+ self.fp32_residual_connection = config.fp32_residual_connection
586
+ self.post_layer_norm = config.post_layer_norm
587
+
588
+ # Number of layers.
589
+ self.num_layers = config.num_layers
590
+
591
+ # Transformer layers.
592
+ def build_layer(layer_number):
593
+ return GLMBlock(config, layer_number, device=device)
594
+
595
+ self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
596
+
597
+ if self.post_layer_norm:
598
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
599
+ # Final layer norm before output.
600
+ self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
601
+ dtype=config.torch_dtype)
602
+
603
+ self.gradient_checkpointing = False
604
+
605
+ def _get_layer(self, layer_number):
606
+ return self.layers[layer_number]
607
+
608
+ def forward(
609
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
610
+ use_cache: Optional[bool] = True,
611
+ output_hidden_states: Optional[bool] = False,
612
+ ):
613
+ if not kv_caches:
614
+ kv_caches = [None for _ in range(self.num_layers)]
615
+ presents = () if use_cache else None
616
+ if self.gradient_checkpointing and self.training:
617
+ if use_cache:
618
+ logger.warning_once(
619
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
620
+ )
621
+ use_cache = False
622
+
623
+ all_self_attentions = None
624
+ all_hidden_states = () if output_hidden_states else None
625
+ for index in range(self.num_layers):
626
+ if output_hidden_states:
627
+ all_hidden_states = all_hidden_states + (hidden_states,)
628
+
629
+ layer = self._get_layer(index)
630
+ if self.gradient_checkpointing and self.training:
631
+ layer_ret = torch.utils.checkpoint.checkpoint(
632
+ layer,
633
+ hidden_states,
634
+ attention_mask,
635
+ rotary_pos_emb,
636
+ kv_caches[index],
637
+ use_cache
638
+ )
639
+ else:
640
+ layer_ret = layer(
641
+ hidden_states,
642
+ attention_mask,
643
+ rotary_pos_emb,
644
+ kv_cache=kv_caches[index],
645
+ use_cache=use_cache
646
+ )
647
+ hidden_states, kv_cache = layer_ret
648
+ if use_cache:
649
+ presents = presents + (kv_cache,)
650
+
651
+ if output_hidden_states:
652
+ all_hidden_states = all_hidden_states + (hidden_states,)
653
+
654
+ # Final layer norm.
655
+ if self.post_layer_norm:
656
+ hidden_states = self.final_layernorm(hidden_states)
657
+
658
+ return hidden_states, presents, all_hidden_states, all_self_attentions
659
+
660
+
661
+ class ChatGLMPreTrainedModel(PreTrainedModel):
662
+ """
663
+ An abstract class to handle weights initialization and
664
+ a simple interface for downloading and loading pretrained models.
665
+ """
666
+
667
+ is_parallelizable = False
668
+ supports_gradient_checkpointing = True
669
+ config_class = ChatGLMConfig
670
+ base_model_prefix = "transformer"
671
+ _no_split_modules = ["GLMBlock"]
672
+
673
+ def _init_weights(self, module: nn.Module):
674
+ """Initialize the weights."""
675
+ return
676
+
677
+ def get_masks(self, input_ids, past_key_values, padding_mask=None):
678
+ batch_size, seq_length = input_ids.shape
679
+ full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
680
+ full_attention_mask.tril_()
681
+ past_length = 0
682
+ if past_key_values:
683
+ past_length = past_key_values[0][0].shape[0]
684
+ if past_length:
685
+ full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
686
+ device=input_ids.device), full_attention_mask), dim=-1)
687
+ if padding_mask is not None:
688
+ full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
689
+ if not past_length and padding_mask is not None:
690
+ full_attention_mask -= padding_mask.unsqueeze(-1) - 1
691
+ full_attention_mask = (full_attention_mask < 0.5).bool()
692
+ full_attention_mask.unsqueeze_(1)
693
+ return full_attention_mask
694
+
695
+ def get_position_ids(self, input_ids, device):
696
+ batch_size, seq_length = input_ids.shape
697
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
698
+ return position_ids
699
+
700
+ def _set_gradient_checkpointing(self, module, value=False):
701
+ if isinstance(module, GLMTransformer):
702
+ module.gradient_checkpointing = value
703
+
704
+
705
+ class Embedding(torch.nn.Module):
706
+ """Language model embeddings."""
707
+
708
+ def __init__(self, config: ChatGLMConfig, device=None):
709
+ super(Embedding, self).__init__()
710
+
711
+ self.hidden_size = config.hidden_size
712
+ # Word embeddings (parallel).
713
+ self.word_embeddings = nn.Embedding(
714
+ config.padded_vocab_size,
715
+ self.hidden_size,
716
+ dtype=config.torch_dtype,
717
+ device=device
718
+ )
719
+ self.fp32_residual_connection = config.fp32_residual_connection
720
+
721
+ def forward(self, input_ids):
722
+ # Embeddings.
723
+ words_embeddings = self.word_embeddings(input_ids)
724
+ embeddings = words_embeddings
725
+ # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
726
+ embeddings = embeddings.transpose(0, 1).contiguous()
727
+ # If the input flag for fp32 residual connection is set, convert for float.
728
+ if self.fp32_residual_connection:
729
+ embeddings = embeddings.float()
730
+ return embeddings
731
+
732
+
733
+ class ChatGLMModel(ChatGLMPreTrainedModel):
734
+ def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
735
+ super().__init__(config)
736
+ if empty_init:
737
+ init_method = skip_init
738
+ else:
739
+ init_method = default_init
740
+ init_kwargs = {}
741
+ if device is not None:
742
+ init_kwargs["device"] = device
743
+ self.embedding = init_method(Embedding, config, **init_kwargs)
744
+ self.num_layers = config.num_layers
745
+ self.multi_query_group_num = config.multi_query_group_num
746
+ self.kv_channels = config.kv_channels
747
+
748
+ # Rotary positional embeddings
749
+ self.seq_length = config.seq_length
750
+ rotary_dim = (
751
+ config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
752
+ )
753
+
754
+ self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl=config.original_rope, device=device,
755
+ dtype=config.torch_dtype)
756
+ self.encoder = init_method(GLMTransformer, config, **init_kwargs)
757
+ self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
758
+ dtype=config.torch_dtype, **init_kwargs)
759
+ self.pre_seq_len = config.pre_seq_len
760
+ self.prefix_projection = config.prefix_projection
761
+ if self.pre_seq_len is not None:
762
+ for param in self.parameters():
763
+ param.requires_grad = False
764
+ self.prefix_tokens = torch.arange(self.pre_seq_len).long()
765
+ self.prefix_encoder = PrefixEncoder(config)
766
+ self.dropout = torch.nn.Dropout(0.1)
767
+
768
+ def get_input_embeddings(self):
769
+ return self.embedding.word_embeddings
770
+
771
+ def get_prompt(self, batch_size, device, dtype=torch.half):
772
+ prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
773
+ past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
774
+ past_key_values = past_key_values.view(
775
+ batch_size,
776
+ self.pre_seq_len,
777
+ self.num_layers * 2,
778
+ self.multi_query_group_num,
779
+ self.kv_channels
780
+ )
781
+ # seq_len, b, nh, hidden_size
782
+ past_key_values = self.dropout(past_key_values)
783
+ past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
784
+ return past_key_values
785
+
786
+ def forward(
787
+ self,
788
+ input_ids,
789
+ position_ids: Optional[torch.Tensor] = None,
790
+ attention_mask: Optional[torch.BoolTensor] = None,
791
+ full_attention_mask: Optional[torch.BoolTensor] = None,
792
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
793
+ inputs_embeds: Optional[torch.Tensor] = None,
794
+ use_cache: Optional[bool] = None,
795
+ output_hidden_states: Optional[bool] = None,
796
+ return_dict: Optional[bool] = None,
797
+ ):
798
+ output_hidden_states = (
799
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
800
+ )
801
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
802
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
803
+
804
+ batch_size, seq_length = input_ids.shape
805
+
806
+ if inputs_embeds is None:
807
+ inputs_embeds = self.embedding(input_ids)
808
+
809
+ if self.pre_seq_len is not None:
810
+ if past_key_values is None:
811
+ past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
812
+ dtype=inputs_embeds.dtype)
813
+ if attention_mask is not None:
814
+ attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)),
815
+ attention_mask], dim=-1)
816
+
817
+ if full_attention_mask is None:
818
+ if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
819
+ full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
820
+
821
+ # Rotary positional embeddings
822
+ rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
823
+ if position_ids is not None:
824
+ rotary_pos_emb = rotary_pos_emb[position_ids]
825
+ else:
826
+ rotary_pos_emb = rotary_pos_emb[None, :seq_length]
827
+ rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
828
+
829
+ # Run encoder.
830
+ hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
831
+ inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
832
+ kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
833
+ )
834
+
835
+ if not return_dict:
836
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
837
+
838
+ return BaseModelOutputWithPast(
839
+ last_hidden_state=hidden_states,
840
+ past_key_values=presents,
841
+ hidden_states=all_hidden_states,
842
+ attentions=all_self_attentions,
843
+ )
844
+
845
+ def quantize(self, weight_bit_width: int):
846
+ from .quantization import quantize
847
+ quantize(self.encoder, weight_bit_width)
848
+ return self
849
+
850
+
851
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
852
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
853
+ super().__init__(config)
854
+
855
+ self.max_sequence_length = config.max_length
856
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
857
+ self.config = config
858
+ self.quantized = False
859
+
860
+ if self.config.quantization_bit:
861
+ self.quantize(self.config.quantization_bit, empty_init=True)
862
+
863
+ def _update_model_kwargs_for_generation(
864
+ self,
865
+ outputs: ModelOutput,
866
+ model_kwargs: Dict[str, Any],
867
+ is_encoder_decoder: bool = False,
868
+ standardize_cache_format: bool = False,
869
+ ) -> Dict[str, Any]:
870
+ # update past_key_values
871
+ model_kwargs["past_key_values"] = self._extract_past_from_model_output(
872
+ outputs, standardize_cache_format=standardize_cache_format
873
+ )
874
+
875
+ # update attention mask
876
+ if "attention_mask" in model_kwargs:
877
+ attention_mask = model_kwargs["attention_mask"]
878
+ model_kwargs["attention_mask"] = torch.cat(
879
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
880
+ )
881
+
882
+ # update position ids
883
+ if "position_ids" in model_kwargs:
884
+ position_ids = model_kwargs["position_ids"]
885
+ new_position_id = position_ids[..., -1:].clone()
886
+ new_position_id += 1
887
+ model_kwargs["position_ids"] = torch.cat(
888
+ [position_ids, new_position_id], dim=-1
889
+ )
890
+
891
+ model_kwargs["is_first_forward"] = False
892
+ return model_kwargs
893
+
894
+ def prepare_inputs_for_generation(
895
+ self,
896
+ input_ids: torch.LongTensor,
897
+ past_key_values: Optional[torch.Tensor] = None,
898
+ attention_mask: Optional[torch.Tensor] = None,
899
+ position_ids: Optional[torch.Tensor] = None,
900
+ is_first_forward: bool = True,
901
+ **kwargs
902
+ ) -> dict:
903
+ # only last token for input_ids if past is not None
904
+ if position_ids is None:
905
+ position_ids = self.get_position_ids(input_ids, device=input_ids.device)
906
+ if not is_first_forward:
907
+ position_ids = position_ids[..., -1:]
908
+ input_ids = input_ids[:, -1:]
909
+ return {
910
+ "input_ids": input_ids,
911
+ "past_key_values": past_key_values,
912
+ "position_ids": position_ids,
913
+ "attention_mask": attention_mask,
914
+ "return_last_logit": True
915
+ }
916
+
917
+ def forward(
918
+ self,
919
+ input_ids: Optional[torch.Tensor] = None,
920
+ position_ids: Optional[torch.Tensor] = None,
921
+ attention_mask: Optional[torch.Tensor] = None,
922
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
923
+ inputs_embeds: Optional[torch.Tensor] = None,
924
+ labels: Optional[torch.Tensor] = None,
925
+ use_cache: Optional[bool] = None,
926
+ output_attentions: Optional[bool] = None,
927
+ output_hidden_states: Optional[bool] = None,
928
+ return_dict: Optional[bool] = None,
929
+ return_last_logit: Optional[bool] = False,
930
+ ):
931
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
932
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
933
+
934
+ transformer_outputs = self.transformer(
935
+ input_ids=input_ids,
936
+ position_ids=position_ids,
937
+ attention_mask=attention_mask,
938
+ past_key_values=past_key_values,
939
+ inputs_embeds=inputs_embeds,
940
+ use_cache=use_cache,
941
+ output_hidden_states=output_hidden_states,
942
+ return_dict=return_dict,
943
+ )
944
+
945
+ hidden_states = transformer_outputs[0]
946
+ if return_last_logit:
947
+ hidden_states = hidden_states[-1:]
948
+ lm_logits = self.transformer.output_layer(hidden_states)
949
+ lm_logits = lm_logits.transpose(0, 1).contiguous()
950
+
951
+ loss = None
952
+ if labels is not None:
953
+ lm_logits = lm_logits.to(torch.float32)
954
+
955
+ # Shift so that tokens < n predict n
956
+ shift_logits = lm_logits[..., :-1, :].contiguous()
957
+ shift_labels = labels[..., 1:].contiguous()
958
+ # Flatten the tokens
959
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
960
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
961
+
962
+ lm_logits = lm_logits.to(hidden_states.dtype)
963
+ loss = loss.to(hidden_states.dtype)
964
+
965
+ if not return_dict:
966
+ output = (lm_logits,) + transformer_outputs[1:]
967
+ return ((loss,) + output) if loss is not None else output
968
+
969
+ return CausalLMOutputWithPast(
970
+ loss=loss,
971
+ logits=lm_logits,
972
+ past_key_values=transformer_outputs.past_key_values,
973
+ hidden_states=transformer_outputs.hidden_states,
974
+ attentions=transformer_outputs.attentions,
975
+ )
976
+
977
+ @staticmethod
978
+ def _reorder_cache(
979
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
980
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
981
+ """
982
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
983
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
984
+ beam_idx at every generation step.
985
+
986
+ Output shares the same memory storage as `past`.
987
+ """
988
+ return tuple(
989
+ (
990
+ layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
991
+ layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
992
+ )
993
+ for layer_past in past
994
+ )
995
+
996
+ def process_response(self, response):
997
+ response = response.strip()
998
+ response = response.replace("[[训练时间]]", "2023年")
999
+ return response
1000
+
1001
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
1002
+ prompt = tokenizer.build_prompt(query, history=history)
1003
+ inputs = tokenizer([prompt], return_tensors="pt")
1004
+ inputs = inputs.to(self.device)
1005
+ return inputs
1006
+
1007
+ def build_stream_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
1008
+ if history:
1009
+ prompt = "\n\n[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
1010
+ input_ids = tokenizer.encode(prompt, add_special_tokens=False)
1011
+ input_ids = input_ids[1:]
1012
+ inputs = tokenizer.batch_encode_plus([(input_ids, None)], return_tensors="pt", add_special_tokens=False)
1013
+ else:
1014
+ prompt = "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
1015
+ inputs = tokenizer([prompt], return_tensors="pt")
1016
+ inputs = inputs.to(self.device)
1017
+ return inputs
1018
+
1019
+ @torch.inference_mode()
1020
+ def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 8192, num_beams=1,
1021
+ do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None, **kwargs):
1022
+ if history is None:
1023
+ history = []
1024
+ if logits_processor is None:
1025
+ logits_processor = LogitsProcessorList()
1026
+ logits_processor.append(InvalidScoreLogitsProcessor())
1027
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1028
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1029
+ inputs = self.build_inputs(tokenizer, query, history=history)
1030
+ outputs = self.generate(**inputs, **gen_kwargs)
1031
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
1032
+ response = tokenizer.decode(outputs)
1033
+ response = self.process_response(response)
1034
+ history = history + [(query, response)]
1035
+ return response, history
1036
+
1037
+ @torch.inference_mode()
1038
+ def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, past_key_values=None,
1039
+ max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
1040
+ return_past_key_values=False, **kwargs):
1041
+ if history is None:
1042
+ history = []
1043
+ if logits_processor is None:
1044
+ logits_processor = LogitsProcessorList()
1045
+ logits_processor.append(InvalidScoreLogitsProcessor())
1046
+ gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
1047
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1048
+ if past_key_values is None and not return_past_key_values:
1049
+ inputs = self.build_inputs(tokenizer, query, history=history)
1050
+ else:
1051
+ inputs = self.build_stream_inputs(tokenizer, query, history=history)
1052
+ if past_key_values is not None:
1053
+ past_length = past_key_values[0][0].shape[0]
1054
+ if self.transformer.pre_seq_len is not None:
1055
+ past_length -= self.transformer.pre_seq_len
1056
+ inputs.position_ids += past_length
1057
+ attention_mask = inputs.attention_mask
1058
+ attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
1059
+ inputs['attention_mask'] = attention_mask
1060
+ for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
1061
+ return_past_key_values=return_past_key_values, **gen_kwargs):
1062
+ if return_past_key_values:
1063
+ outputs, past_key_values = outputs
1064
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
1065
+ response = tokenizer.decode(outputs)
1066
+ if response and response[-1] != "�":
1067
+ response = self.process_response(response)
1068
+ new_history = history + [(query, response)]
1069
+ if return_past_key_values:
1070
+ yield response, new_history, past_key_values
1071
+ else:
1072
+ yield response, new_history
1073
+
1074
+ @torch.inference_mode()
1075
+ def stream_generate(
1076
+ self,
1077
+ input_ids,
1078
+ generation_config: Optional[GenerationConfig] = None,
1079
+ logits_processor: Optional[LogitsProcessorList] = None,
1080
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1081
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1082
+ return_past_key_values=False,
1083
+ **kwargs,
1084
+ ):
1085
+ batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
1086
+
1087
+ if generation_config is None:
1088
+ generation_config = self.generation_config
1089
+ generation_config = copy.deepcopy(generation_config)
1090
+ model_kwargs = generation_config.update(**kwargs)
1091
+ bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
1092
+
1093
+ if isinstance(eos_token_id, int):
1094
+ eos_token_id = [eos_token_id]
1095
+
1096
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1097
+ if has_default_max_length and generation_config.max_new_tokens is None:
1098
+ warnings.warn(
1099
+ f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
1100
+ "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
1101
+ " recommend using `max_new_tokens` to control the maximum length of the generation.",
1102
+ UserWarning,
1103
+ )
1104
+ elif generation_config.max_new_tokens is not None:
1105
+ generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
1106
+ if not has_default_max_length:
1107
+ logger.warn(
1108
+ f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
1109
+ f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
1110
+ "Please refer to the documentation for more information. "
1111
+ "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
1112
+ UserWarning,
1113
+ )
1114
+
1115
+ if input_ids_seq_length >= generation_config.max_length:
1116
+ input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1117
+ logger.warning(
1118
+ f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
1119
+ f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1120
+ " increasing `max_new_tokens`."
1121
+ )
1122
+
1123
+ # 2. Set generation parameters if not already defined
1124
+ logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
1125
+ stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
1126
+
1127
+ logits_processor = self._get_logits_processor(
1128
+ generation_config=generation_config,
1129
+ input_ids_seq_length=input_ids_seq_length,
1130
+ encoder_input_ids=input_ids,
1131
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1132
+ logits_processor=logits_processor,
1133
+ )
1134
+
1135
+ stopping_criteria = self._get_stopping_criteria(
1136
+ generation_config=generation_config, stopping_criteria=stopping_criteria
1137
+ )
1138
+ logits_warper = self._get_logits_warper(generation_config)
1139
+
1140
+ unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
1141
+ scores = None
1142
+ while True:
1143
+ model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
1144
+ # forward pass to get next token
1145
+ outputs = self(
1146
+ **model_inputs,
1147
+ return_dict=True,
1148
+ output_attentions=False,
1149
+ output_hidden_states=False,
1150
+ )
1151
+
1152
+ next_token_logits = outputs.logits[:, -1, :]
1153
+
1154
+ # pre-process distribution
1155
+ next_token_scores = logits_processor(input_ids, next_token_logits)
1156
+ next_token_scores = logits_warper(input_ids, next_token_scores)
1157
+
1158
+ # sample
1159
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
1160
+ if generation_config.do_sample:
1161
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
1162
+ else:
1163
+ next_tokens = torch.argmax(probs, dim=-1)
1164
+
1165
+ # update generated ids, model inputs, and length for next step
1166
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
1167
+ model_kwargs = self._update_model_kwargs_for_generation(
1168
+ outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
1169
+ )
1170
+ unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
1171
+ if return_past_key_values:
1172
+ yield input_ids, outputs.past_key_values
1173
+ else:
1174
+ yield input_ids
1175
+ # stop when each sentence is finished, or if we exceed the maximum length
1176
+ if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
1177
+ break
1178
+
1179
+ def quantize(self, bits: int, empty_init=False, device=None, **kwargs):
1180
+ if bits == 0:
1181
+ return
1182
+
1183
+ from .quantization import quantize
1184
+
1185
+ if self.quantized:
1186
+ logger.info("Already quantized.")
1187
+ return self
1188
+
1189
+ self.quantized = True
1190
+
1191
+ self.config.quantization_bit = bits
1192
+
1193
+ self.transformer.encoder = quantize(self.transformer.encoder, bits, empty_init=empty_init, device=device,
1194
+ **kwargs)
1195
+ return self
1196
+
1197
+
1198
+ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
1199
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
1200
+ super().__init__(config)
1201
+
1202
+ self.num_labels = config.num_labels
1203
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
1204
+
1205
+ self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=torch.half)
1206
+ if config.classifier_dropout is not None:
1207
+ self.dropout = nn.Dropout(config.classifier_dropout)
1208
+ else:
1209
+ self.dropout = None
1210
+ self.config = config
1211
+
1212
+ if self.config.quantization_bit:
1213
+ self.quantize(self.config.quantization_bit, empty_init=True)
1214
+
1215
+ def forward(
1216
+ self,
1217
+ input_ids: Optional[torch.LongTensor] = None,
1218
+ position_ids: Optional[torch.LongTensor] = None,
1219
+ attention_mask: Optional[torch.Tensor] = None,
1220
+ full_attention_mask: Optional[torch.Tensor] = None,
1221
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1222
+ inputs_embeds: Optional[torch.LongTensor] = None,
1223
+ labels: Optional[torch.LongTensor] = None,
1224
+ use_cache: Optional[bool] = None,
1225
+ output_hidden_states: Optional[bool] = None,
1226
+ return_dict: Optional[bool] = None,
1227
+ ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
1228
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1229
+
1230
+ transformer_outputs = self.transformer(
1231
+ input_ids=input_ids,
1232
+ position_ids=position_ids,
1233
+ attention_mask=attention_mask,
1234
+ full_attention_mask=full_attention_mask,
1235
+ past_key_values=past_key_values,
1236
+ inputs_embeds=inputs_embeds,
1237
+ use_cache=use_cache,
1238
+ output_hidden_states=output_hidden_states,
1239
+ return_dict=return_dict,
1240
+ )
1241
+
1242
+ hidden_states = transformer_outputs[0]
1243
+ pooled_hidden_states = hidden_states[-1]
1244
+ if self.dropout is not None:
1245
+ pooled_hidden_states = self.dropout(pooled_hidden_states)
1246
+ logits = self.classifier_head(pooled_hidden_states)
1247
+
1248
+ loss = None
1249
+ if labels is not None:
1250
+ if self.config.problem_type is None:
1251
+ if self.num_labels == 1:
1252
+ self.config.problem_type = "regression"
1253
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1254
+ self.config.problem_type = "single_label_classification"
1255
+ else:
1256
+ self.config.problem_type = "multi_label_classification"
1257
+
1258
+ if self.config.problem_type == "regression":
1259
+ loss_fct = MSELoss()
1260
+ if self.num_labels == 1:
1261
+ loss = loss_fct(logits.squeeze().float(), labels.squeeze())
1262
+ else:
1263
+ loss = loss_fct(logits.float(), labels)
1264
+ elif self.config.problem_type == "single_label_classification":
1265
+ loss_fct = CrossEntropyLoss()
1266
+ loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1))
1267
+ elif self.config.problem_type == "multi_label_classification":
1268
+ loss_fct = BCEWithLogitsLoss()
1269
+ loss = loss_fct(logits.float(), labels.view(-1, self.num_labels))
1270
+
1271
+ if not return_dict:
1272
+ output = (logits,) + transformer_outputs[1:]
1273
+ return ((loss,) + output) if loss is not None else output
1274
+
1275
+ return SequenceClassifierOutputWithPast(
1276
+ loss=loss,
1277
+ logits=logits,
1278
+ past_key_values=transformer_outputs.past_key_values,
1279
+ hidden_states=transformer_outputs.hidden_states,
1280
+ attentions=transformer_outputs.attentions,
1281
+ )
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 24974336128
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
+ "transformer.embedding.word_embeddings.weight": "pytorch_model-00001-of-00003.bin",
8
+ "transformer.encoder.final_layernorm.weight": "pytorch_model-00003-of-00003.bin",
9
+ "transformer.encoder.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
10
+ "transformer.encoder.layers.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
11
+ "transformer.encoder.layers.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
12
+ "transformer.encoder.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
+ "transformer.encoder.layers.0.self_attention.dense.weight": "pytorch_model-00001-of-00003.bin",
14
+ "transformer.encoder.layers.0.self_attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
15
+ "transformer.encoder.layers.0.self_attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
16
+ "transformer.encoder.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
17
+ "transformer.encoder.layers.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
18
+ "transformer.encoder.layers.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
19
+ "transformer.encoder.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
20
+ "transformer.encoder.layers.1.self_attention.dense.weight": "pytorch_model-00001-of-00003.bin",
21
+ "transformer.encoder.layers.1.self_attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
22
+ "transformer.encoder.layers.1.self_attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
23
+ "transformer.encoder.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
24
+ "transformer.encoder.layers.10.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
25
+ "transformer.encoder.layers.10.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
26
+ "transformer.encoder.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
27
+ "transformer.encoder.layers.10.self_attention.dense.weight": "pytorch_model-00001-of-00003.bin",
28
+ "transformer.encoder.layers.10.self_attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
29
+ "transformer.encoder.layers.10.self_attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
30
+ "transformer.encoder.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
31
+ "transformer.encoder.layers.11.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
32
+ "transformer.encoder.layers.11.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
33
+ "transformer.encoder.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
34
+ "transformer.encoder.layers.11.self_attention.dense.weight": "pytorch_model-00002-of-00003.bin",
35
+ "transformer.encoder.layers.11.self_attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
36
+ "transformer.encoder.layers.11.self_attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
37
+ "transformer.encoder.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
38
+ "transformer.encoder.layers.12.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
39
+ "transformer.encoder.layers.12.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
40
+ "transformer.encoder.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
41
+ "transformer.encoder.layers.12.self_attention.dense.weight": "pytorch_model-00002-of-00003.bin",
42
+ "transformer.encoder.layers.12.self_attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
43
+ "transformer.encoder.layers.12.self_attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
44
+ "transformer.encoder.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
45
+ "transformer.encoder.layers.13.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
46
+ "transformer.encoder.layers.13.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
47
+ "transformer.encoder.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
48
+ "transformer.encoder.layers.13.self_attention.dense.weight": "pytorch_model-00002-of-00003.bin",
49
+ "transformer.encoder.layers.13.self_attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
50
+ "transformer.encoder.layers.13.self_attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
51
+ "transformer.encoder.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
52
+ "transformer.encoder.layers.14.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
53
+ "transformer.encoder.layers.14.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
54
+ "transformer.encoder.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
55
+ "transformer.encoder.layers.14.self_attention.dense.weight": "pytorch_model-00002-of-00003.bin",
56
+ "transformer.encoder.layers.14.self_attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
57
+ "transformer.encoder.layers.14.self_attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
58
+ "transformer.encoder.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
59
+ "transformer.encoder.layers.15.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
60
+ "transformer.encoder.layers.15.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
61
+ "transformer.encoder.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
62
+ "transformer.encoder.layers.15.self_attention.dense.weight": "pytorch_model-00002-of-00003.bin",
63
+ "transformer.encoder.layers.15.self_attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
64
+ "transformer.encoder.layers.15.self_attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
65
+ "transformer.encoder.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
66
+ "transformer.encoder.layers.16.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
67
+ "transformer.encoder.layers.16.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
68
+ "transformer.encoder.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
69
+ "transformer.encoder.layers.16.self_attention.dense.weight": "pytorch_model-00002-of-00003.bin",
70
+ "transformer.encoder.layers.16.self_attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
71
+ "transformer.encoder.layers.16.self_attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
72
+ "transformer.encoder.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
73
+ "transformer.encoder.layers.17.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
74
+ "transformer.encoder.layers.17.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
75
+ "transformer.encoder.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
76
+ "transformer.encoder.layers.17.self_attention.dense.weight": "pytorch_model-00002-of-00003.bin",
77
+ "transformer.encoder.layers.17.self_attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
78
+ "transformer.encoder.layers.17.self_attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
79
+ "transformer.encoder.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
80
+ "transformer.encoder.layers.18.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
81
+ "transformer.encoder.layers.18.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
82
+ "transformer.encoder.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
83
+ "transformer.encoder.layers.18.self_attention.dense.weight": "pytorch_model-00002-of-00003.bin",
84
+ "transformer.encoder.layers.18.self_attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
85
+ "transformer.encoder.layers.18.self_attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
86
+ "transformer.encoder.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
87
+ "transformer.encoder.layers.19.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
88
+ "transformer.encoder.layers.19.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
89
+ "transformer.encoder.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
90
+ "transformer.encoder.layers.19.self_attention.dense.weight": "pytorch_model-00002-of-00003.bin",
91
+ "transformer.encoder.layers.19.self_attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
92
+ "transformer.encoder.layers.19.self_attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
93
+ "transformer.encoder.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
94
+ "transformer.encoder.layers.2.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
95
+ "transformer.encoder.layers.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
96
+ "transformer.encoder.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
97
+ "transformer.encoder.layers.2.self_attention.dense.weight": "pytorch_model-00001-of-00003.bin",
98
+ "transformer.encoder.layers.2.self_attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
99
+ "transformer.encoder.layers.2.self_attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
100
+ "transformer.encoder.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
101
+ "transformer.encoder.layers.20.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
102
+ "transformer.encoder.layers.20.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
103
+ "transformer.encoder.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
104
+ "transformer.encoder.layers.20.self_attention.dense.weight": "pytorch_model-00002-of-00003.bin",
105
+ "transformer.encoder.layers.20.self_attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
106
+ "transformer.encoder.layers.20.self_attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
107
+ "transformer.encoder.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
108
+ "transformer.encoder.layers.21.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
109
+ "transformer.encoder.layers.21.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
110
+ "transformer.encoder.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
111
+ "transformer.encoder.layers.21.self_attention.dense.weight": "pytorch_model-00002-of-00003.bin",
112
+ "transformer.encoder.layers.21.self_attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
113
+ "transformer.encoder.layers.21.self_attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
114
+ "transformer.encoder.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
115
+ "transformer.encoder.layers.22.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
116
+ "transformer.encoder.layers.22.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
117
+ "transformer.encoder.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
118
+ "transformer.encoder.layers.22.self_attention.dense.weight": "pytorch_model-00002-of-00003.bin",
119
+ "transformer.encoder.layers.22.self_attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
120
+ "transformer.encoder.layers.22.self_attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
121
+ "transformer.encoder.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
122
+ "transformer.encoder.layers.23.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
123
+ "transformer.encoder.layers.23.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
124
+ "transformer.encoder.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
125
+ "transformer.encoder.layers.23.self_attention.dense.weight": "pytorch_model-00003-of-00003.bin",
126
+ "transformer.encoder.layers.23.self_attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
127
+ "transformer.encoder.layers.23.self_attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
128
+ "transformer.encoder.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
129
+ "transformer.encoder.layers.24.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
130
+ "transformer.encoder.layers.24.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
131
+ "transformer.encoder.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
132
+ "transformer.encoder.layers.24.self_attention.dense.weight": "pytorch_model-00003-of-00003.bin",
133
+ "transformer.encoder.layers.24.self_attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
134
+ "transformer.encoder.layers.24.self_attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
135
+ "transformer.encoder.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
136
+ "transformer.encoder.layers.25.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
137
+ "transformer.encoder.layers.25.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
138
+ "transformer.encoder.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
139
+ "transformer.encoder.layers.25.self_attention.dense.weight": "pytorch_model-00003-of-00003.bin",
140
+ "transformer.encoder.layers.25.self_attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
141
+ "transformer.encoder.layers.25.self_attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
142
+ "transformer.encoder.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
143
+ "transformer.encoder.layers.26.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
144
+ "transformer.encoder.layers.26.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
145
+ "transformer.encoder.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
146
+ "transformer.encoder.layers.26.self_attention.dense.weight": "pytorch_model-00003-of-00003.bin",
147
+ "transformer.encoder.layers.26.self_attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
148
+ "transformer.encoder.layers.26.self_attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
149
+ "transformer.encoder.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
150
+ "transformer.encoder.layers.27.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
151
+ "transformer.encoder.layers.27.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
152
+ "transformer.encoder.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
153
+ "transformer.encoder.layers.27.self_attention.dense.weight": "pytorch_model-00003-of-00003.bin",
154
+ "transformer.encoder.layers.27.self_attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
155
+ "transformer.encoder.layers.27.self_attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
156
+ "transformer.encoder.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
157
+ "transformer.encoder.layers.3.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
158
+ "transformer.encoder.layers.3.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
159
+ "transformer.encoder.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
160
+ "transformer.encoder.layers.3.self_attention.dense.weight": "pytorch_model-00001-of-00003.bin",
161
+ "transformer.encoder.layers.3.self_attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
162
+ "transformer.encoder.layers.3.self_attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
163
+ "transformer.encoder.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
164
+ "transformer.encoder.layers.4.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
165
+ "transformer.encoder.layers.4.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
166
+ "transformer.encoder.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
167
+ "transformer.encoder.layers.4.self_attention.dense.weight": "pytorch_model-00001-of-00003.bin",
168
+ "transformer.encoder.layers.4.self_attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
169
+ "transformer.encoder.layers.4.self_attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
170
+ "transformer.encoder.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
171
+ "transformer.encoder.layers.5.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
172
+ "transformer.encoder.layers.5.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
173
+ "transformer.encoder.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
174
+ "transformer.encoder.layers.5.self_attention.dense.weight": "pytorch_model-00001-of-00003.bin",
175
+ "transformer.encoder.layers.5.self_attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
176
+ "transformer.encoder.layers.5.self_attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
177
+ "transformer.encoder.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
178
+ "transformer.encoder.layers.6.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
179
+ "transformer.encoder.layers.6.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
180
+ "transformer.encoder.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
181
+ "transformer.encoder.layers.6.self_attention.dense.weight": "pytorch_model-00001-of-00003.bin",
182
+ "transformer.encoder.layers.6.self_attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
183
+ "transformer.encoder.layers.6.self_attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
184
+ "transformer.encoder.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
185
+ "transformer.encoder.layers.7.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
186
+ "transformer.encoder.layers.7.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
187
+ "transformer.encoder.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
188
+ "transformer.encoder.layers.7.self_attention.dense.weight": "pytorch_model-00001-of-00003.bin",
189
+ "transformer.encoder.layers.7.self_attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
190
+ "transformer.encoder.layers.7.self_attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
191
+ "transformer.encoder.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
192
+ "transformer.encoder.layers.8.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
193
+ "transformer.encoder.layers.8.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
194
+ "transformer.encoder.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
195
+ "transformer.encoder.layers.8.self_attention.dense.weight": "pytorch_model-00001-of-00003.bin",
196
+ "transformer.encoder.layers.8.self_attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
197
+ "transformer.encoder.layers.8.self_attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
198
+ "transformer.encoder.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
199
+ "transformer.encoder.layers.9.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
200
+ "transformer.encoder.layers.9.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
201
+ "transformer.encoder.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
202
+ "transformer.encoder.layers.9.self_attention.dense.weight": "pytorch_model-00001-of-00003.bin",
203
+ "transformer.encoder.layers.9.self_attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
204
+ "transformer.encoder.layers.9.self_attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
205
+ "transformer.output_layer.weight": "pytorch_model-00003-of-00003.bin",
206
+ "transformer.rotary_pos_emb.inv_freq": "pytorch_model-00001-of-00003.bin"
207
+ }
208
+ }
quantization.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.nn import Linear
2
+ from torch.nn.parameter import Parameter
3
+
4
+ import bz2
5
+ import torch
6
+ import base64
7
+ import ctypes
8
+ from transformers.utils import logging
9
+
10
+ from typing import List
11
+ from functools import partial
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+ try:
16
+ from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
17
+
18
+ class Kernel:
19
+ def __init__(self, code: bytes, function_names: List[str]):
20
+ self.code = code
21
+ self._function_names = function_names
22
+ self._cmodule = LazyKernelCModule(self.code)
23
+
24
+ for name in self._function_names:
25
+ setattr(self, name, KernelFunction(self._cmodule, name))
26
+
27
+ quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
28
+
29
+ kernels = Kernel(
30
+ bz2.decompress(base64.b64decode(quantization_code)),
31
+ [
32
+ "int4WeightCompression",
33
+ "int4WeightExtractionFloat",
34
+ "int4WeightExtractionHalf",
35
+ "int8WeightExtractionFloat",
36
+ "int8WeightExtractionHalf",
37
+ ],
38
+ )
39
+ except Exception as exception:
40
+ kernels = None
41
+ logger.warning("Failed to load cpm_kernels:" + str(exception))
42
+
43
+
44
+ class W8A16Linear(torch.autograd.Function):
45
+ @staticmethod
46
+ def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
47
+ ctx.inp_shape = inp.size()
48
+ ctx.weight_bit_width = weight_bit_width
49
+ out_features = quant_w.size(0)
50
+ inp = inp.contiguous().view(-1, inp.size(-1))
51
+ weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
52
+ ctx.weight_shape = weight.size()
53
+ output = inp.mm(weight.t())
54
+ ctx.save_for_backward(inp, quant_w, scale_w)
55
+ return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
56
+
57
+ @staticmethod
58
+ def backward(ctx, grad_output: torch.Tensor):
59
+ inp, quant_w, scale_w = ctx.saved_tensors
60
+ weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width)
61
+ grad_output = grad_output.contiguous().view(-1, weight.size(0))
62
+ grad_input = grad_output.mm(weight)
63
+ grad_weight = grad_output.t().mm(inp)
64
+ return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None
65
+
66
+
67
+ def compress_int4_weight(weight: torch.Tensor): # (n, m)
68
+ with torch.cuda.device(weight.device):
69
+ n, m = weight.size(0), weight.size(1)
70
+ assert m % 2 == 0
71
+ m = m // 2
72
+ out = torch.empty(n, m, dtype=torch.int8, device="cuda")
73
+ stream = torch.cuda.current_stream()
74
+
75
+ gridDim = (n, 1, 1)
76
+ blockDim = (min(round_up(m, 32), 1024), 1, 1)
77
+
78
+ kernels.int4WeightCompression(
79
+ gridDim,
80
+ blockDim,
81
+ 0,
82
+ stream,
83
+ [ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n), ctypes.c_int32(m)],
84
+ )
85
+ return out
86
+
87
+
88
+ def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int):
89
+ assert scale_list.dtype in [torch.half, torch.bfloat16]
90
+ assert weight.dtype in [torch.int8]
91
+ if source_bit_width == 8:
92
+ return weight.to(scale_list.dtype) * scale_list[:, None]
93
+ elif source_bit_width == 4:
94
+ func = (
95
+ kernels.int4WeightExtractionHalf if scale_list.dtype == torch.half else kernels.int4WeightExtractionBFloat16
96
+ )
97
+ else:
98
+ assert False, "Unsupported bit-width"
99
+
100
+ with torch.cuda.device(weight.device):
101
+ n, m = weight.size(0), weight.size(1)
102
+ out = torch.empty(n, m * (8 // source_bit_width), dtype=scale_list.dtype, device="cuda")
103
+ stream = torch.cuda.current_stream()
104
+
105
+ gridDim = (n, 1, 1)
106
+ blockDim = (min(round_up(m, 32), 1024), 1, 1)
107
+
108
+ func(
109
+ gridDim,
110
+ blockDim,
111
+ 0,
112
+ stream,
113
+ [
114
+ ctypes.c_void_p(weight.data_ptr()),
115
+ ctypes.c_void_p(scale_list.data_ptr()),
116
+ ctypes.c_void_p(out.data_ptr()),
117
+ ctypes.c_int32(n),
118
+ ctypes.c_int32(m),
119
+ ],
120
+ )
121
+ return out
122
+
123
+
124
+ class QuantizedLinear(torch.nn.Module):
125
+ def __init__(self, weight_bit_width: int, weight, bias=None, device="cpu", dtype=None, empty_init=False, *args,
126
+ **kwargs):
127
+ super().__init__()
128
+ self.weight_bit_width = weight_bit_width
129
+
130
+ shape = weight.shape
131
+
132
+ if weight is None or empty_init:
133
+ self.weight = torch.empty(shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=device)
134
+ self.weight_scale = torch.empty(shape[0], dtype=dtype, device=device)
135
+ else:
136
+ self.weight_scale = weight.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)
137
+ self.weight = torch.round(weight / self.weight_scale[:, None]).to(torch.int8)
138
+ if weight_bit_width == 4:
139
+ self.weight = compress_int4_weight(self.weight)
140
+
141
+ self.weight = Parameter(self.weight.to(device), requires_grad=False)
142
+ self.weight_scale = Parameter(self.weight_scale.to(device), requires_grad=False)
143
+ self.bias = Parameter(bias.to(device), requires_grad=False) if bias is not None else None
144
+
145
+ def forward(self, input):
146
+ output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
147
+ if self.bias is not None:
148
+ output = output + self.bias
149
+ return output
150
+
151
+
152
+ def quantize(model, weight_bit_width, empty_init=False, device=None):
153
+ """Replace fp16 linear with quantized linear"""
154
+ for layer in model.layers:
155
+ layer.self_attention.query_key_value = QuantizedLinear(
156
+ weight_bit_width=weight_bit_width,
157
+ weight=layer.self_attention.query_key_value.weight.to(torch.cuda.current_device()),
158
+ bias=layer.self_attention.query_key_value.bias,
159
+ dtype=layer.self_attention.query_key_value.weight.dtype,
160
+ device=layer.self_attention.query_key_value.weight.device if device is None else device,
161
+ empty_init=empty_init
162
+ )
163
+ layer.self_attention.dense = QuantizedLinear(
164
+ weight_bit_width=weight_bit_width,
165
+ weight=layer.self_attention.dense.weight.to(torch.cuda.current_device()),
166
+ bias=layer.self_attention.dense.bias,
167
+ dtype=layer.self_attention.dense.weight.dtype,
168
+ device=layer.self_attention.dense.weight.device if device is None else device,
169
+ empty_init=empty_init
170
+ )
171
+ layer.mlp.dense_h_to_4h = QuantizedLinear(
172
+ weight_bit_width=weight_bit_width,
173
+ weight=layer.mlp.dense_h_to_4h.weight.to(torch.cuda.current_device()),
174
+ bias=layer.mlp.dense_h_to_4h.bias,
175
+ dtype=layer.mlp.dense_h_to_4h.weight.dtype,
176
+ device=layer.mlp.dense_h_to_4h.weight.device if device is None else device,
177
+ empty_init=empty_init
178
+ )
179
+ layer.mlp.dense_4h_to_h = QuantizedLinear(
180
+ weight_bit_width=weight_bit_width,
181
+ weight=layer.mlp.dense_4h_to_h.weight.to(torch.cuda.current_device()),
182
+ bias=layer.mlp.dense_4h_to_h.bias,
183
+ dtype=layer.mlp.dense_4h_to_h.weight.dtype,
184
+ device=layer.mlp.dense_4h_to_h.weight.device if device is None else device,
185
+ empty_init=empty_init
186
+ )
187
+
188
+ return model
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
3
+ size 1018370
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_chatglm.ChatGLMTokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "clean_up_tokenization_spaces": false,
9
+ "do_lower_case": false,
10
+ "model_max_length": 1000000000000000019884624838656,
11
+ "padding_side": "right",
12
+ "remove_space": false,
13
+ "tokenizer_class": "ChatGLMTokenizer"
14
+ }
training_loss.png ADDED