Rifat Mamayusupov commited on
Commit
e0e8f37
·
verified ·
1 Parent(s): 3cfe271

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -5
README.md CHANGED
@@ -14,13 +14,48 @@ model-index:
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
  should probably proofread and complete it, then remove this comment. -->
16
 
17
- # outputs
18
-
19
- This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on an unknown dataset.
20
-
21
  ## Model description
22
 
23
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  ## Intended uses & limitations
26
 
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
  should probably proofread and complete it, then remove this comment. -->
16
 
 
 
 
 
17
  ## Model description
18
 
19
+ GOOGLEGEMMA modelini UZB datasetga fine-tuned qilindi PEFT bilan. natijasi yaxshi deyishish qiyin.
20
+ Shuning uchun PEFT siz qilishni tafsiya qilaman .
21
+
22
+ **Agarda siz PEFT bilan fine-tuned qilingan modellarni ishlatishni bilmasangiz, exmaple codega qarang**
23
+
24
+ ```
25
+ import torch
26
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer
27
+
28
+ model_name = "google/gemma-7b"
29
+
30
+ bnb_config = BitsAndBytesConfig(
31
+ load_in_4bit=True,
32
+ bnb_4bit_quant_type="nf4",
33
+ bnb_4bit_compute_dtype=torch.float16,
34
+ )
35
+
36
+ model = AutoModelForCausalLM.from_pretrained(
37
+ model_name,
38
+ quantization_config=bnb_config,
39
+ trust_remote_code=True
40
+ )
41
+ model.config.use_cache = False
42
+
43
+ ##### yuqoridagi code hamma PEFT bilan qilingan modellarni reduced par qilish orqali free GPU Notebooklarda foydalanish imkoni beradi.
44
+
45
+ from peft import PeftModel, PeftConfig
46
+ from transformers import AutoModelForCausalLM,AutoTokenizer
47
+
48
+ config = PeftConfig.from_pretrained("ai-nightcoder/outputs")
49
+ tokenizer = AutoTokenizer.from_pretrained('ai-nightcoder/outputs')
50
+
51
+ inputs = tokenizer("Xorijiy mamlakatlar", return_tensors="pt")
52
+ outputs = model(**inputs, labels=inputs["input_ids"])
53
+ predicted_token_class_ids = outputs.logits.argmax(-1)
54
+
55
+ generated_text = tokenizer.batch_decode(predicted_token_class_ids, skip_special_tokens=True)
56
+ print(generated_text)
57
+
58
+ ```
59
 
60
  ## Intended uses & limitations
61