blackeys commited on
Commit
e0ffdaa
1 Parent(s): 6c294c8

unit1 LunarLander trained model with PPO via stablebaselines3

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 244.64 +/- 22.66
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6900cb32e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6900cb3370>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6900cb3400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6900cb3490>", "_build": "<function ActorCriticPolicy._build at 0x7f6900cb3520>", "forward": "<function ActorCriticPolicy.forward at 0x7f6900cb35b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6900cb3640>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6900cb36d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6900cb3760>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6900cb37f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6900cb3880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6900cb3910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6900ca3700>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYAIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVkgAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==", "n": 4, "start": 0, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683189014929415309, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALN7SL1I/6K6FjvVuvON27WnbQ66YzL1OQAAgD8AAIA/mkHgvB/dqrk8q7o7PO6auelfLrqV0Ni6AACAPwAAgD+AGNq9hJc4Pq6rGz5ffHO++8ZFPSI0JL0AAAAAAAAAANr0gj0A/MI+F+G1vTTRiL7bTxs91jDYvAAAAAAAAAAAZk6gvCmQd7rm8ns5kS8nNChoRDrlzo+4AACAPwAAgD9m/tK8AwJsvDeZCDu3XF48IC1IPSpyuT0AAIA/AACAPzM4hT1SLLI/ti4cP7xiUL4UVzu46QUmPgAAAAAAAAAAs0cGvdTDyT3olko+JiCRvuC1hT1ahlG9AAAAAAAAAAAA/YG8xmWGPuwkDL3sRi2+QeOQvfZIVz0AAAAAAAAAAMZmkz76RjA/r6SdOyPDmb43MpA+KEltvgAAAAAAAAAAZh4PO1wXZLo60IG5Rxa1tJM6Djs6N5Y4AACAPwAAgD8N8oi9w0EAuhif7zie4x40BLAeuvDSDLgAAIA/AACAPwDBhrwU9JS6Ni/iuu9OA7beMhy5ZfUCOgAAgD8AAIA/Rog1vlJBWT9QUJ69f8drvuLKR75k87o9AAAAAAAAAAAaRje91EaNPoPg7rxzJHW+78xQvShgv70AAAAAAAAAAA0D0r0U8Ly6tHTKOZM4xjRwNbM5xfzmuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXoQpyqXbYUCUhpRSlIwBbJRN6AOMAXSUR0CWR+9t/FzddX2UKGgGaAloD0MIoRNCB13wbUCUhpRSlGgVTYYCaBZHQJZXB92HLzR1fZQoaAZoCWgPQwicFrzoqyxlQJSGlFKUaBVN6ANoFkdAllhtoi9qUXV9lChoBmgJaA9DCK29T1WhwGZAlIaUUpRoFU3oA2gWR0CWX1xFiKBNdX2UKGgGaAloD0MIbAcj9ommbkCUhpRSlGgVTTsCaBZHQJZjV24d6s11fZQoaAZoCWgPQwi0d0ZbVaJwQJSGlFKUaBVNogFoFkdAlmY2Op84P3V9lChoBmgJaA9DCCCZDp2eLGBAlIaUUpRoFU3oA2gWR0CWanmR/3FldX2UKGgGaAloD0MIRwN4C6SPYkCUhpRSlGgVTegDaBZHQJZvorupjtp1fZQoaAZoCWgPQwjlQ1A1+mpkQJSGlFKUaBVN6ANoFkdAlm+xO1v2oXV9lChoBmgJaA9DCDM1Cd6Q5mNAlIaUUpRoFU3oA2gWR0CWcFw9aEBbdX2UKGgGaAloD0MIJhqk4KnnYUCUhpRSlGgVTegDaBZHQJaDyZYxL011fZQoaAZoCWgPQwi/ub963BtmQJSGlFKUaBVN6ANoFkdAloT+P7vXsnV9lChoBmgJaA9DCGr2QCuwfm1AlIaUUpRoFU2TAWgWR0CWiX/mT1TSdX2UKGgGaAloD0MIEmiwqfNoYkCUhpRSlGgVTegDaBZHQJaJyZLIxQB1fZQoaAZoCWgPQwizz2OU58txQJSGlFKUaBVN9AFoFkdAlox9WuHN5nV9lChoBmgJaA9DCP61vHK92WNAlIaUUpRoFU3oA2gWR0CWjLQ40dildX2UKGgGaAloD0MIZmzoZj9hcUCUhpRSlGgVTWsDaBZHQJaRXst03fh1fZQoaAZoCWgPQwj1g7pIoZJmQJSGlFKUaBVN6ANoFkdAlpTkLDye7XV9lChoBmgJaA9DCKIqptJPX1xAlIaUUpRoFU3oA2gWR0CWlasF+uvEdX2UKGgGaAloD0MIdGGkF7WIa0CUhpRSlGgVTf8BaBZHQJal3ZVXFLp1fZQoaAZoCWgPQwjPa+wSVc1mQJSGlFKUaBVN6ANoFkdAlqhKWLP2PHV9lChoBmgJaA9DCOHwgojUtGdAlIaUUpRoFU3oA2gWR0CWqT7btZ3cdX2UKGgGaAloD0MI7zuGx/7dcUCUhpRSlGgVTa4BaBZHQJapq6e5Fw11fZQoaAZoCWgPQwiQEVDhiOttQJSGlFKUaBVN9QFoFkdAlqsBXfZVXHV9lChoBmgJaA9DCE/JObGH83BAlIaUUpRoFU3JAmgWR0CWrI+2E0zkdX2UKGgGaAloD0MILLZJRSM+cECUhpRSlGgVTWoBaBZHQJasqvUz9CN1fZQoaAZoCWgPQwivldBdklJjQJSGlFKUaBVN6ANoFkdAlrF6C6H0snV9lChoBmgJaA9DCAqgGFkyTHBAlIaUUpRoFU1RA2gWR0CWskKHfuTidX2UKGgGaAloD0MI06BoHsBwYkCUhpRSlGgVTegDaBZHQJa00CHRCyB1fZQoaAZoCWgPQwh4mWGjrCdHQJSGlFKUaBVL6mgWR0CWt6B0ZFXrdX2UKGgGaAloD0MInOCbps9RZ0CUhpRSlGgVTegDaBZHQJa5nHwPRRd1fZQoaAZoCWgPQwiGVidnKNdfQJSGlFKUaBVN6ANoFkdAltDN4RmK7HV9lChoBmgJaA9DCAVOtoE7/XBAlIaUUpRoFU24AWgWR0CW01qHXVbzdX2UKGgGaAloD0MIlWHcDSKMa0CUhpRSlGgVTQkDaBZHQJbVtlvqC6J1fZQoaAZoCWgPQwglICbhgmZwQJSGlFKUaBVNzAFoFkdAlteM8YAKfHV9lChoBmgJaA9DCBMM5xpmc2VAlIaUUpRoFU3oA2gWR0CW2ZQOFxn4dX2UKGgGaAloD0MIZED2eveKUECUhpRSlGgVS+BoFkdAlttQbVBlc3V9lChoBmgJaA9DCOVEuwop9V1AlIaUUpRoFU3oA2gWR0CW2/2606YFdX2UKGgGaAloD0MIqUvGMRKUbECUhpRSlGgVTbIDaBZHQJbczP0I1Lt1fZQoaAZoCWgPQwj9FMeBF2NxQJSGlFKUaBVNWgJoFkdAlt21FDv3J3V9lChoBmgJaA9DCFtfJLRlxHFAlIaUUpRoFU1LAWgWR0CW3rAY51eTdX2UKGgGaAloD0MIG0rtRbRAb0CUhpRSlGgVTUACaBZHQJbfDvw3HaN1fZQoaAZoCWgPQwhvZ195EEJvQJSGlFKUaBVNswJoFkdAluCRDb8FZHV9lChoBmgJaA9DCD1H5LsU53FAlIaUUpRoFU3dAmgWR0CW4Keq7yxzdX2UKGgGaAloD0MI5bm+D0dFckCUhpRSlGgVTQwCaBZHQJbhRvqC6H11fZQoaAZoCWgPQwghyhe0EOVrQJSGlFKUaBVN9gFoFkdAluM9waR6nnV9lChoBmgJaA9DCPm84qlHrm5AlIaUUpRoFU1dAWgWR0CW5QoDxLCfdX2UKGgGaAloD0MI3LxxUhg5cECUhpRSlGgVTVoBaBZHQJbmJyR0U491fZQoaAZoCWgPQwjm54am7KlxQJSGlFKUaBVNLgFoFkdAluapN47ihnV9lChoBmgJaA9DCBmO5zOgmW9AlIaUUpRoFU3bAWgWR0CW6R7ojfNzdX2UKGgGaAloD0MIkV8/xAZDcUCUhpRSlGgVTSYBaBZHQJbp/2Xb/Ot1fZQoaAZoCWgPQwiuug7VFH9wQJSGlFKUaBVNVwFoFkdAlutZiuuA7XV9lChoBmgJaA9DCC9SKAvfe29AlIaUUpRoFU1oAWgWR0CW62UcGTs6dX2UKGgGaAloD0MIwVPIlToacECUhpRSlGgVTTUBaBZHQJbuo2DQJHB1fZQoaAZoCWgPQwhe8dQjDQ9tQJSGlFKUaBVNOgNoFkdAlu8iofjjrHV9lChoBmgJaA9DCAfPhCYJa3BAlIaUUpRoFU3GAWgWR0CW7z0UoKD1dX2UKGgGaAloD0MI1eqrqwKpckCUhpRSlGgVTWIBaBZHQJbv6l67dzp1fZQoaAZoCWgPQwhkk/yIHyBwQJSGlFKUaBVNNAFoFkdAlvlg3PzFuXV9lChoBmgJaA9DCGOZfon4eXFAlIaUUpRoFU3IAWgWR0CW/O5rP+n7dX2UKGgGaAloD0MISfQyiuWdbECUhpRSlGgVTY4CaBZHQJb9vQiRnvl1fZQoaAZoCWgPQwjlKEAUjJdwQJSGlFKUaBVNNANoFkdAlv9g1vVEu3V9lChoBmgJaA9DCDKvIw4ZvnFAlIaUUpRoFU1BAWgWR0CXAHvwVj7RdX2UKGgGaAloD0MIRfC/lWzab0CUhpRSlGgVTTQCaBZHQJcE5ECvHLl1fZQoaAZoCWgPQwgY6xuYHG5yQJSGlFKUaBVNpQFoFkdAlxwoIOYplXV9lChoBmgJaA9DCChlUkObm3JAlIaUUpRoFU0bAmgWR0CXHh9ORDCxdX2UKGgGaAloD0MIzeSbba5YcUCUhpRSlGgVTSoCaBZHQJce8cHWz4V1fZQoaAZoCWgPQwjbiv1ld9VvQJSGlFKUaBVN/QJoFkdAlx/9J8OTaHV9lChoBmgJaA9DCFsKSPvfnnBAlIaUUpRoFU2NAmgWR0CXIVJBPbfxdX2UKGgGaAloD0MIXYyBdZzUa0CUhpRSlGgVTe8CaBZHQJchemVJL/V1fZQoaAZoCWgPQwglsg+ybLtxQJSGlFKUaBVNFwFoFkdAlyTVCPZIx3V9lChoBmgJaA9DCAqhgy5hkHFAlIaUUpRoFU2rAWgWR0CXJhaef7JodX2UKGgGaAloD0MIKes3E9P7Y0CUhpRSlGgVTegDaBZHQJcmIdZJTVF1fZQoaAZoCWgPQwj3IW+5eqdvQJSGlFKUaBVNxwNoFkdAlyZcriEQG3V9lChoBmgJaA9DCKSqCaJu6XBAlIaUUpRoFU0VAWgWR0CXJ1TPBzmwdX2UKGgGaAloD0MIY2GInD7+cECUhpRSlGgVTYIBaBZHQJcnYVEd/8V1fZQoaAZoCWgPQwiXqx+b5C1yQJSGlFKUaBVNdwFoFkdAlygHEMspX3V9lChoBmgJaA9DCICbxYuFETFAlIaUUpRoFUviaBZHQJco7OX3QD51fZQoaAZoCWgPQwg+QWK7O5RwQJSGlFKUaBVNIwNoFkdAlyyCUornT3V9lChoBmgJaA9DCJc8npafPmxAlIaUUpRoFU0lAmgWR0CXLSI42jwhdX2UKGgGaAloD0MIyLYMOMujb0CUhpRSlGgVTYIBaBZHQJctLYywfQt1fZQoaAZoCWgPQwj9ag4QzORxQJSGlFKUaBVNNwFoFkdAly5G/Firk3V9lChoBmgJaA9DCMWu7e0W52xAlIaUUpRoFU06A2gWR0CXLpKbayrxdX2UKGgGaAloD0MIvAUSFH85cUCUhpRSlGgVTZgBaBZHQJcxQPvrnkl1fZQoaAZoCWgPQwg0vi8u1WxwQJSGlFKUaBVNSwFoFkdAlzOywW3z+XV9lChoBmgJaA9DCELsTKFzBnBAlIaUUpRoFU0/AWgWR0CXNJ2HLzPKdX2UKGgGaAloD0MIXFoNiTuhcECUhpRSlGgVTTYBaBZHQJc1CmWMS9N1fZQoaAZoCWgPQwjwhjQqsKdwQJSGlFKUaBVNVgFoFkdAlzWehsZYP3V9lChoBmgJaA9DCCO8PQgB4m5AlIaUUpRoFU2TAWgWR0CXN0mOlwcYdX2UKGgGaAloD0MI8YEd/4U+cUCUhpRSlGgVTXECaBZHQJc5nUKArhB1fZQoaAZoCWgPQwgK3Lqb59pyQJSGlFKUaBVNLgJoFkdAlzmqmoBJZnV9lChoBmgJaA9DCIJWYMhqyXFAlIaUUpRoFU0mAmgWR0CXPPVsUIszdX2UKGgGaAloD0MIEqPnFrpkcUCUhpRSlGgVTWcBaBZHQJc+H6fra/R1fZQoaAZoCWgPQwg6zm3C/dhwQJSGlFKUaBVNlAFoFkdAl0EZzDGcWnV9lChoBmgJaA9DCIbGE0GcZUtAlIaUUpRoFU0CAWgWR0CXQqL4vexfdX2UKGgGaAloD0MIGXJsPcPTbkCUhpRSlGgVTb4BaBZHQJdC4aNuLrJ1fZQoaAZoCWgPQwjysbtAyRNvQJSGlFKUaBVNIwJoFkdAl0N0+X7cf3V9lChoBmgJaA9DCG10zk/xzG1AlIaUUpRoFU20AWgWR0CXRL+IuXeFdX2UKGgGaAloD0MIVaNXAxQFcUCUhpRSlGgVTb8BaBZHQJdJz0I1LrZ1fZQoaAZoCWgPQwjt8UI6vMpvQJSGlFKUaBVNcAFoFkdAl0nz3RG+bnV9lChoBmgJaA9DCM7/q44cL0FAlIaUUpRoFU0IAWgWR0CXTaEAHVwxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.26.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d4055a43fb56f13b4e66ce9cefe7ac554ea94acabed49c513c57aca795cbc7c
3
+ size 148092
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6900cb32e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6900cb3370>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6900cb3400>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6900cb3490>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6900cb3520>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6900cb35b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6900cb3640>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6900cb36d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6900cb3760>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6900cb37f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6900cb3880>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6900cb3910>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6900ca3700>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVYAIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
27
+ "dtype": "float32",
28
+ "bounded_below": "[ True True True True True True True True]",
29
+ "bounded_above": "[ True True True True True True True True]",
30
+ "_shape": [
31
+ 8
32
+ ],
33
+ "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
34
+ "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
35
+ "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
36
+ "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
37
+ "_np_random": null
38
+ },
39
+ "action_space": {
40
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
41
+ ":serialized:": "gAWVkgAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==",
42
+ "n": 4,
43
+ "start": 0,
44
+ "_shape": [],
45
+ "dtype": "int64",
46
+ "_np_random": null
47
+ },
48
+ "n_envs": 16,
49
+ "num_timesteps": 1015808,
50
+ "_total_timesteps": 1000000,
51
+ "_num_timesteps_at_start": 0,
52
+ "seed": null,
53
+ "action_noise": null,
54
+ "start_time": 1683189014929415309,
55
+ "learning_rate": 0.0003,
56
+ "tensorboard_log": null,
57
+ "lr_schedule": {
58
+ ":type:": "<class 'function'>",
59
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
60
+ },
61
+ "_last_obs": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALN7SL1I/6K6FjvVuvON27WnbQ66YzL1OQAAgD8AAIA/mkHgvB/dqrk8q7o7PO6auelfLrqV0Ni6AACAPwAAgD+AGNq9hJc4Pq6rGz5ffHO++8ZFPSI0JL0AAAAAAAAAANr0gj0A/MI+F+G1vTTRiL7bTxs91jDYvAAAAAAAAAAAZk6gvCmQd7rm8ns5kS8nNChoRDrlzo+4AACAPwAAgD9m/tK8AwJsvDeZCDu3XF48IC1IPSpyuT0AAIA/AACAPzM4hT1SLLI/ti4cP7xiUL4UVzu46QUmPgAAAAAAAAAAs0cGvdTDyT3olko+JiCRvuC1hT1ahlG9AAAAAAAAAAAA/YG8xmWGPuwkDL3sRi2+QeOQvfZIVz0AAAAAAAAAAMZmkz76RjA/r6SdOyPDmb43MpA+KEltvgAAAAAAAAAAZh4PO1wXZLo60IG5Rxa1tJM6Djs6N5Y4AACAPwAAgD8N8oi9w0EAuhif7zie4x40BLAeuvDSDLgAAIA/AACAPwDBhrwU9JS6Ni/iuu9OA7beMhy5ZfUCOgAAgD8AAIA/Rog1vlJBWT9QUJ69f8drvuLKR75k87o9AAAAAAAAAAAaRje91EaNPoPg7rxzJHW+78xQvShgv70AAAAAAAAAAA0D0r0U8Ly6tHTKOZM4xjRwNbM5xfzmuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_episode_starts": {
66
+ ":type:": "<class 'numpy.ndarray'>",
67
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
68
+ },
69
+ "_last_original_obs": null,
70
+ "_episode_num": 0,
71
+ "use_sde": false,
72
+ "sde_sample_freq": -1,
73
+ "_current_progress_remaining": -0.015808000000000044,
74
+ "ep_info_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXoQpyqXbYUCUhpRSlIwBbJRN6AOMAXSUR0CWR+9t/FzddX2UKGgGaAloD0MIoRNCB13wbUCUhpRSlGgVTYYCaBZHQJZXB92HLzR1fZQoaAZoCWgPQwicFrzoqyxlQJSGlFKUaBVN6ANoFkdAllhtoi9qUXV9lChoBmgJaA9DCK29T1WhwGZAlIaUUpRoFU3oA2gWR0CWX1xFiKBNdX2UKGgGaAloD0MIbAcj9ommbkCUhpRSlGgVTTsCaBZHQJZjV24d6s11fZQoaAZoCWgPQwi0d0ZbVaJwQJSGlFKUaBVNogFoFkdAlmY2Op84P3V9lChoBmgJaA9DCCCZDp2eLGBAlIaUUpRoFU3oA2gWR0CWanmR/3FldX2UKGgGaAloD0MIRwN4C6SPYkCUhpRSlGgVTegDaBZHQJZvorupjtp1fZQoaAZoCWgPQwjlQ1A1+mpkQJSGlFKUaBVN6ANoFkdAlm+xO1v2oXV9lChoBmgJaA9DCDM1Cd6Q5mNAlIaUUpRoFU3oA2gWR0CWcFw9aEBbdX2UKGgGaAloD0MIJhqk4KnnYUCUhpRSlGgVTegDaBZHQJaDyZYxL011fZQoaAZoCWgPQwi/ub963BtmQJSGlFKUaBVN6ANoFkdAloT+P7vXsnV9lChoBmgJaA9DCGr2QCuwfm1AlIaUUpRoFU2TAWgWR0CWiX/mT1TSdX2UKGgGaAloD0MIEmiwqfNoYkCUhpRSlGgVTegDaBZHQJaJyZLIxQB1fZQoaAZoCWgPQwizz2OU58txQJSGlFKUaBVN9AFoFkdAlox9WuHN5nV9lChoBmgJaA9DCP61vHK92WNAlIaUUpRoFU3oA2gWR0CWjLQ40dildX2UKGgGaAloD0MIZmzoZj9hcUCUhpRSlGgVTWsDaBZHQJaRXst03fh1fZQoaAZoCWgPQwj1g7pIoZJmQJSGlFKUaBVN6ANoFkdAlpTkLDye7XV9lChoBmgJaA9DCKIqptJPX1xAlIaUUpRoFU3oA2gWR0CWlasF+uvEdX2UKGgGaAloD0MIdGGkF7WIa0CUhpRSlGgVTf8BaBZHQJal3ZVXFLp1fZQoaAZoCWgPQwjPa+wSVc1mQJSGlFKUaBVN6ANoFkdAlqhKWLP2PHV9lChoBmgJaA9DCOHwgojUtGdAlIaUUpRoFU3oA2gWR0CWqT7btZ3cdX2UKGgGaAloD0MI7zuGx/7dcUCUhpRSlGgVTa4BaBZHQJapq6e5Fw11fZQoaAZoCWgPQwiQEVDhiOttQJSGlFKUaBVN9QFoFkdAlqsBXfZVXHV9lChoBmgJaA9DCE/JObGH83BAlIaUUpRoFU3JAmgWR0CWrI+2E0zkdX2UKGgGaAloD0MILLZJRSM+cECUhpRSlGgVTWoBaBZHQJasqvUz9CN1fZQoaAZoCWgPQwivldBdklJjQJSGlFKUaBVN6ANoFkdAlrF6C6H0snV9lChoBmgJaA9DCAqgGFkyTHBAlIaUUpRoFU1RA2gWR0CWskKHfuTidX2UKGgGaAloD0MI06BoHsBwYkCUhpRSlGgVTegDaBZHQJa00CHRCyB1fZQoaAZoCWgPQwh4mWGjrCdHQJSGlFKUaBVL6mgWR0CWt6B0ZFXrdX2UKGgGaAloD0MInOCbps9RZ0CUhpRSlGgVTegDaBZHQJa5nHwPRRd1fZQoaAZoCWgPQwiGVidnKNdfQJSGlFKUaBVN6ANoFkdAltDN4RmK7HV9lChoBmgJaA9DCAVOtoE7/XBAlIaUUpRoFU24AWgWR0CW01qHXVbzdX2UKGgGaAloD0MIlWHcDSKMa0CUhpRSlGgVTQkDaBZHQJbVtlvqC6J1fZQoaAZoCWgPQwglICbhgmZwQJSGlFKUaBVNzAFoFkdAlteM8YAKfHV9lChoBmgJaA9DCBMM5xpmc2VAlIaUUpRoFU3oA2gWR0CW2ZQOFxn4dX2UKGgGaAloD0MIZED2eveKUECUhpRSlGgVS+BoFkdAlttQbVBlc3V9lChoBmgJaA9DCOVEuwop9V1AlIaUUpRoFU3oA2gWR0CW2/2606YFdX2UKGgGaAloD0MIqUvGMRKUbECUhpRSlGgVTbIDaBZHQJbczP0I1Lt1fZQoaAZoCWgPQwj9FMeBF2NxQJSGlFKUaBVNWgJoFkdAlt21FDv3J3V9lChoBmgJaA9DCFtfJLRlxHFAlIaUUpRoFU1LAWgWR0CW3rAY51eTdX2UKGgGaAloD0MIG0rtRbRAb0CUhpRSlGgVTUACaBZHQJbfDvw3HaN1fZQoaAZoCWgPQwhvZ195EEJvQJSGlFKUaBVNswJoFkdAluCRDb8FZHV9lChoBmgJaA9DCD1H5LsU53FAlIaUUpRoFU3dAmgWR0CW4Keq7yxzdX2UKGgGaAloD0MI5bm+D0dFckCUhpRSlGgVTQwCaBZHQJbhRvqC6H11fZQoaAZoCWgPQwghyhe0EOVrQJSGlFKUaBVN9gFoFkdAluM9waR6nnV9lChoBmgJaA9DCPm84qlHrm5AlIaUUpRoFU1dAWgWR0CW5QoDxLCfdX2UKGgGaAloD0MI3LxxUhg5cECUhpRSlGgVTVoBaBZHQJbmJyR0U491fZQoaAZoCWgPQwjm54am7KlxQJSGlFKUaBVNLgFoFkdAluapN47ihnV9lChoBmgJaA9DCBmO5zOgmW9AlIaUUpRoFU3bAWgWR0CW6R7ojfNzdX2UKGgGaAloD0MIkV8/xAZDcUCUhpRSlGgVTSYBaBZHQJbp/2Xb/Ot1fZQoaAZoCWgPQwiuug7VFH9wQJSGlFKUaBVNVwFoFkdAlutZiuuA7XV9lChoBmgJaA9DCC9SKAvfe29AlIaUUpRoFU1oAWgWR0CW62UcGTs6dX2UKGgGaAloD0MIwVPIlToacECUhpRSlGgVTTUBaBZHQJbuo2DQJHB1fZQoaAZoCWgPQwhe8dQjDQ9tQJSGlFKUaBVNOgNoFkdAlu8iofjjrHV9lChoBmgJaA9DCAfPhCYJa3BAlIaUUpRoFU3GAWgWR0CW7z0UoKD1dX2UKGgGaAloD0MI1eqrqwKpckCUhpRSlGgVTWIBaBZHQJbv6l67dzp1fZQoaAZoCWgPQwhkk/yIHyBwQJSGlFKUaBVNNAFoFkdAlvlg3PzFuXV9lChoBmgJaA9DCGOZfon4eXFAlIaUUpRoFU3IAWgWR0CW/O5rP+n7dX2UKGgGaAloD0MISfQyiuWdbECUhpRSlGgVTY4CaBZHQJb9vQiRnvl1fZQoaAZoCWgPQwjlKEAUjJdwQJSGlFKUaBVNNANoFkdAlv9g1vVEu3V9lChoBmgJaA9DCDKvIw4ZvnFAlIaUUpRoFU1BAWgWR0CXAHvwVj7RdX2UKGgGaAloD0MIRfC/lWzab0CUhpRSlGgVTTQCaBZHQJcE5ECvHLl1fZQoaAZoCWgPQwgY6xuYHG5yQJSGlFKUaBVNpQFoFkdAlxwoIOYplXV9lChoBmgJaA9DCChlUkObm3JAlIaUUpRoFU0bAmgWR0CXHh9ORDCxdX2UKGgGaAloD0MIzeSbba5YcUCUhpRSlGgVTSoCaBZHQJce8cHWz4V1fZQoaAZoCWgPQwjbiv1ld9VvQJSGlFKUaBVN/QJoFkdAlx/9J8OTaHV9lChoBmgJaA9DCFsKSPvfnnBAlIaUUpRoFU2NAmgWR0CXIVJBPbfxdX2UKGgGaAloD0MIXYyBdZzUa0CUhpRSlGgVTe8CaBZHQJchemVJL/V1fZQoaAZoCWgPQwglsg+ybLtxQJSGlFKUaBVNFwFoFkdAlyTVCPZIx3V9lChoBmgJaA9DCAqhgy5hkHFAlIaUUpRoFU2rAWgWR0CXJhaef7JodX2UKGgGaAloD0MIKes3E9P7Y0CUhpRSlGgVTegDaBZHQJcmIdZJTVF1fZQoaAZoCWgPQwj3IW+5eqdvQJSGlFKUaBVNxwNoFkdAlyZcriEQG3V9lChoBmgJaA9DCKSqCaJu6XBAlIaUUpRoFU0VAWgWR0CXJ1TPBzmwdX2UKGgGaAloD0MIY2GInD7+cECUhpRSlGgVTYIBaBZHQJcnYVEd/8V1fZQoaAZoCWgPQwiXqx+b5C1yQJSGlFKUaBVNdwFoFkdAlygHEMspX3V9lChoBmgJaA9DCICbxYuFETFAlIaUUpRoFUviaBZHQJco7OX3QD51fZQoaAZoCWgPQwg+QWK7O5RwQJSGlFKUaBVNIwNoFkdAlyyCUornT3V9lChoBmgJaA9DCJc8npafPmxAlIaUUpRoFU0lAmgWR0CXLSI42jwhdX2UKGgGaAloD0MIyLYMOMujb0CUhpRSlGgVTYIBaBZHQJctLYywfQt1fZQoaAZoCWgPQwj9ag4QzORxQJSGlFKUaBVNNwFoFkdAly5G/Firk3V9lChoBmgJaA9DCMWu7e0W52xAlIaUUpRoFU06A2gWR0CXLpKbayrxdX2UKGgGaAloD0MIvAUSFH85cUCUhpRSlGgVTZgBaBZHQJcxQPvrnkl1fZQoaAZoCWgPQwg0vi8u1WxwQJSGlFKUaBVNSwFoFkdAlzOywW3z+XV9lChoBmgJaA9DCELsTKFzBnBAlIaUUpRoFU0/AWgWR0CXNJ2HLzPKdX2UKGgGaAloD0MIXFoNiTuhcECUhpRSlGgVTTYBaBZHQJc1CmWMS9N1fZQoaAZoCWgPQwjwhjQqsKdwQJSGlFKUaBVNVgFoFkdAlzWehsZYP3V9lChoBmgJaA9DCCO8PQgB4m5AlIaUUpRoFU2TAWgWR0CXN0mOlwcYdX2UKGgGaAloD0MI8YEd/4U+cUCUhpRSlGgVTXECaBZHQJc5nUKArhB1fZQoaAZoCWgPQwgK3Lqb59pyQJSGlFKUaBVNLgJoFkdAlzmqmoBJZnV9lChoBmgJaA9DCIJWYMhqyXFAlIaUUpRoFU0mAmgWR0CXPPVsUIszdX2UKGgGaAloD0MIEqPnFrpkcUCUhpRSlGgVTWcBaBZHQJc+H6fra/R1fZQoaAZoCWgPQwg6zm3C/dhwQJSGlFKUaBVNlAFoFkdAl0EZzDGcWnV9lChoBmgJaA9DCIbGE0GcZUtAlIaUUpRoFU0CAWgWR0CXQqL4vexfdX2UKGgGaAloD0MIGXJsPcPTbkCUhpRSlGgVTb4BaBZHQJdC4aNuLrJ1fZQoaAZoCWgPQwjysbtAyRNvQJSGlFKUaBVNIwJoFkdAl0N0+X7cf3V9lChoBmgJaA9DCG10zk/xzG1AlIaUUpRoFU20AWgWR0CXRL+IuXeFdX2UKGgGaAloD0MIVaNXAxQFcUCUhpRSlGgVTb8BaBZHQJdJz0I1LrZ1fZQoaAZoCWgPQwjt8UI6vMpvQJSGlFKUaBVNcAFoFkdAl0nz3RG+bnV9lChoBmgJaA9DCM7/q44cL0FAlIaUUpRoFU0IAWgWR0CXTaEAHVwxdWUu"
77
+ },
78
+ "ep_success_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
81
+ },
82
+ "_n_updates": 248,
83
+ "n_steps": 1024,
84
+ "gamma": 0.999,
85
+ "gae_lambda": 0.98,
86
+ "ent_coef": 0.01,
87
+ "vf_coef": 0.5,
88
+ "max_grad_norm": 0.5,
89
+ "batch_size": 64,
90
+ "n_epochs": 4,
91
+ "clip_range": {
92
+ ":type:": "<class 'function'>",
93
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
94
+ },
95
+ "clip_range_vf": null,
96
+ "normalize_advantage": true,
97
+ "target_kl": null
98
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d4e87fe2d2235e8d1c58b6c6edd688df100c39f2015b861df828e25adbcac18
3
+ size 88057
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9273bffb4d889d1d6ea3fd0e48b90e22db06e14c020477a6bff242d8f5723720
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.26.2
replay.mp4 ADDED
Binary file (162 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 244.6404239924919, "std_reward": 22.656992618963805, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-04T09:59:45.357964"}