unit1 LunarLander trained model with PPO via stablebaselines3
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +98 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 244.64 +/- 22.66
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6900cb32e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6900cb3370>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6900cb3400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6900cb3490>", "_build": "<function ActorCriticPolicy._build at 0x7f6900cb3520>", "forward": "<function ActorCriticPolicy.forward at 0x7f6900cb35b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6900cb3640>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6900cb36d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6900cb3760>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6900cb37f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6900cb3880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6900cb3910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6900ca3700>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYAIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVkgAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==", "n": 4, "start": 0, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683189014929415309, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALN7SL1I/6K6FjvVuvON27WnbQ66YzL1OQAAgD8AAIA/mkHgvB/dqrk8q7o7PO6auelfLrqV0Ni6AACAPwAAgD+AGNq9hJc4Pq6rGz5ffHO++8ZFPSI0JL0AAAAAAAAAANr0gj0A/MI+F+G1vTTRiL7bTxs91jDYvAAAAAAAAAAAZk6gvCmQd7rm8ns5kS8nNChoRDrlzo+4AACAPwAAgD9m/tK8AwJsvDeZCDu3XF48IC1IPSpyuT0AAIA/AACAPzM4hT1SLLI/ti4cP7xiUL4UVzu46QUmPgAAAAAAAAAAs0cGvdTDyT3olko+JiCRvuC1hT1ahlG9AAAAAAAAAAAA/YG8xmWGPuwkDL3sRi2+QeOQvfZIVz0AAAAAAAAAAMZmkz76RjA/r6SdOyPDmb43MpA+KEltvgAAAAAAAAAAZh4PO1wXZLo60IG5Rxa1tJM6Djs6N5Y4AACAPwAAgD8N8oi9w0EAuhif7zie4x40BLAeuvDSDLgAAIA/AACAPwDBhrwU9JS6Ni/iuu9OA7beMhy5ZfUCOgAAgD8AAIA/Rog1vlJBWT9QUJ69f8drvuLKR75k87o9AAAAAAAAAAAaRje91EaNPoPg7rxzJHW+78xQvShgv70AAAAAAAAAAA0D0r0U8Ly6tHTKOZM4xjRwNbM5xfzmuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXoQpyqXbYUCUhpRSlIwBbJRN6AOMAXSUR0CWR+9t/FzddX2UKGgGaAloD0MIoRNCB13wbUCUhpRSlGgVTYYCaBZHQJZXB92HLzR1fZQoaAZoCWgPQwicFrzoqyxlQJSGlFKUaBVN6ANoFkdAllhtoi9qUXV9lChoBmgJaA9DCK29T1WhwGZAlIaUUpRoFU3oA2gWR0CWX1xFiKBNdX2UKGgGaAloD0MIbAcj9ommbkCUhpRSlGgVTTsCaBZHQJZjV24d6s11fZQoaAZoCWgPQwi0d0ZbVaJwQJSGlFKUaBVNogFoFkdAlmY2Op84P3V9lChoBmgJaA9DCCCZDp2eLGBAlIaUUpRoFU3oA2gWR0CWanmR/3FldX2UKGgGaAloD0MIRwN4C6SPYkCUhpRSlGgVTegDaBZHQJZvorupjtp1fZQoaAZoCWgPQwjlQ1A1+mpkQJSGlFKUaBVN6ANoFkdAlm+xO1v2oXV9lChoBmgJaA9DCDM1Cd6Q5mNAlIaUUpRoFU3oA2gWR0CWcFw9aEBbdX2UKGgGaAloD0MIJhqk4KnnYUCUhpRSlGgVTegDaBZHQJaDyZYxL011fZQoaAZoCWgPQwi/ub963BtmQJSGlFKUaBVN6ANoFkdAloT+P7vXsnV9lChoBmgJaA9DCGr2QCuwfm1AlIaUUpRoFU2TAWgWR0CWiX/mT1TSdX2UKGgGaAloD0MIEmiwqfNoYkCUhpRSlGgVTegDaBZHQJaJyZLIxQB1fZQoaAZoCWgPQwizz2OU58txQJSGlFKUaBVN9AFoFkdAlox9WuHN5nV9lChoBmgJaA9DCP61vHK92WNAlIaUUpRoFU3oA2gWR0CWjLQ40dildX2UKGgGaAloD0MIZmzoZj9hcUCUhpRSlGgVTWsDaBZHQJaRXst03fh1fZQoaAZoCWgPQwj1g7pIoZJmQJSGlFKUaBVN6ANoFkdAlpTkLDye7XV9lChoBmgJaA9DCKIqptJPX1xAlIaUUpRoFU3oA2gWR0CWlasF+uvEdX2UKGgGaAloD0MIdGGkF7WIa0CUhpRSlGgVTf8BaBZHQJal3ZVXFLp1fZQoaAZoCWgPQwjPa+wSVc1mQJSGlFKUaBVN6ANoFkdAlqhKWLP2PHV9lChoBmgJaA9DCOHwgojUtGdAlIaUUpRoFU3oA2gWR0CWqT7btZ3cdX2UKGgGaAloD0MI7zuGx/7dcUCUhpRSlGgVTa4BaBZHQJapq6e5Fw11fZQoaAZoCWgPQwiQEVDhiOttQJSGlFKUaBVN9QFoFkdAlqsBXfZVXHV9lChoBmgJaA9DCE/JObGH83BAlIaUUpRoFU3JAmgWR0CWrI+2E0zkdX2UKGgGaAloD0MILLZJRSM+cECUhpRSlGgVTWoBaBZHQJasqvUz9CN1fZQoaAZoCWgPQwivldBdklJjQJSGlFKUaBVN6ANoFkdAlrF6C6H0snV9lChoBmgJaA9DCAqgGFkyTHBAlIaUUpRoFU1RA2gWR0CWskKHfuTidX2UKGgGaAloD0MI06BoHsBwYkCUhpRSlGgVTegDaBZHQJa00CHRCyB1fZQoaAZoCWgPQwh4mWGjrCdHQJSGlFKUaBVL6mgWR0CWt6B0ZFXrdX2UKGgGaAloD0MInOCbps9RZ0CUhpRSlGgVTegDaBZHQJa5nHwPRRd1fZQoaAZoCWgPQwiGVidnKNdfQJSGlFKUaBVN6ANoFkdAltDN4RmK7HV9lChoBmgJaA9DCAVOtoE7/XBAlIaUUpRoFU24AWgWR0CW01qHXVbzdX2UKGgGaAloD0MIlWHcDSKMa0CUhpRSlGgVTQkDaBZHQJbVtlvqC6J1fZQoaAZoCWgPQwglICbhgmZwQJSGlFKUaBVNzAFoFkdAlteM8YAKfHV9lChoBmgJaA9DCBMM5xpmc2VAlIaUUpRoFU3oA2gWR0CW2ZQOFxn4dX2UKGgGaAloD0MIZED2eveKUECUhpRSlGgVS+BoFkdAlttQbVBlc3V9lChoBmgJaA9DCOVEuwop9V1AlIaUUpRoFU3oA2gWR0CW2/2606YFdX2UKGgGaAloD0MIqUvGMRKUbECUhpRSlGgVTbIDaBZHQJbczP0I1Lt1fZQoaAZoCWgPQwj9FMeBF2NxQJSGlFKUaBVNWgJoFkdAlt21FDv3J3V9lChoBmgJaA9DCFtfJLRlxHFAlIaUUpRoFU1LAWgWR0CW3rAY51eTdX2UKGgGaAloD0MIG0rtRbRAb0CUhpRSlGgVTUACaBZHQJbfDvw3HaN1fZQoaAZoCWgPQwhvZ195EEJvQJSGlFKUaBVNswJoFkdAluCRDb8FZHV9lChoBmgJaA9DCD1H5LsU53FAlIaUUpRoFU3dAmgWR0CW4Keq7yxzdX2UKGgGaAloD0MI5bm+D0dFckCUhpRSlGgVTQwCaBZHQJbhRvqC6H11fZQoaAZoCWgPQwghyhe0EOVrQJSGlFKUaBVN9gFoFkdAluM9waR6nnV9lChoBmgJaA9DCPm84qlHrm5AlIaUUpRoFU1dAWgWR0CW5QoDxLCfdX2UKGgGaAloD0MI3LxxUhg5cECUhpRSlGgVTVoBaBZHQJbmJyR0U491fZQoaAZoCWgPQwjm54am7KlxQJSGlFKUaBVNLgFoFkdAluapN47ihnV9lChoBmgJaA9DCBmO5zOgmW9AlIaUUpRoFU3bAWgWR0CW6R7ojfNzdX2UKGgGaAloD0MIkV8/xAZDcUCUhpRSlGgVTSYBaBZHQJbp/2Xb/Ot1fZQoaAZoCWgPQwiuug7VFH9wQJSGlFKUaBVNVwFoFkdAlutZiuuA7XV9lChoBmgJaA9DCC9SKAvfe29AlIaUUpRoFU1oAWgWR0CW62UcGTs6dX2UKGgGaAloD0MIwVPIlToacECUhpRSlGgVTTUBaBZHQJbuo2DQJHB1fZQoaAZoCWgPQwhe8dQjDQ9tQJSGlFKUaBVNOgNoFkdAlu8iofjjrHV9lChoBmgJaA9DCAfPhCYJa3BAlIaUUpRoFU3GAWgWR0CW7z0UoKD1dX2UKGgGaAloD0MI1eqrqwKpckCUhpRSlGgVTWIBaBZHQJbv6l67dzp1fZQoaAZoCWgPQwhkk/yIHyBwQJSGlFKUaBVNNAFoFkdAlvlg3PzFuXV9lChoBmgJaA9DCGOZfon4eXFAlIaUUpRoFU3IAWgWR0CW/O5rP+n7dX2UKGgGaAloD0MISfQyiuWdbECUhpRSlGgVTY4CaBZHQJb9vQiRnvl1fZQoaAZoCWgPQwjlKEAUjJdwQJSGlFKUaBVNNANoFkdAlv9g1vVEu3V9lChoBmgJaA9DCDKvIw4ZvnFAlIaUUpRoFU1BAWgWR0CXAHvwVj7RdX2UKGgGaAloD0MIRfC/lWzab0CUhpRSlGgVTTQCaBZHQJcE5ECvHLl1fZQoaAZoCWgPQwgY6xuYHG5yQJSGlFKUaBVNpQFoFkdAlxwoIOYplXV9lChoBmgJaA9DCChlUkObm3JAlIaUUpRoFU0bAmgWR0CXHh9ORDCxdX2UKGgGaAloD0MIzeSbba5YcUCUhpRSlGgVTSoCaBZHQJce8cHWz4V1fZQoaAZoCWgPQwjbiv1ld9VvQJSGlFKUaBVN/QJoFkdAlx/9J8OTaHV9lChoBmgJaA9DCFsKSPvfnnBAlIaUUpRoFU2NAmgWR0CXIVJBPbfxdX2UKGgGaAloD0MIXYyBdZzUa0CUhpRSlGgVTe8CaBZHQJchemVJL/V1fZQoaAZoCWgPQwglsg+ybLtxQJSGlFKUaBVNFwFoFkdAlyTVCPZIx3V9lChoBmgJaA9DCAqhgy5hkHFAlIaUUpRoFU2rAWgWR0CXJhaef7JodX2UKGgGaAloD0MIKes3E9P7Y0CUhpRSlGgVTegDaBZHQJcmIdZJTVF1fZQoaAZoCWgPQwj3IW+5eqdvQJSGlFKUaBVNxwNoFkdAlyZcriEQG3V9lChoBmgJaA9DCKSqCaJu6XBAlIaUUpRoFU0VAWgWR0CXJ1TPBzmwdX2UKGgGaAloD0MIY2GInD7+cECUhpRSlGgVTYIBaBZHQJcnYVEd/8V1fZQoaAZoCWgPQwiXqx+b5C1yQJSGlFKUaBVNdwFoFkdAlygHEMspX3V9lChoBmgJaA9DCICbxYuFETFAlIaUUpRoFUviaBZHQJco7OX3QD51fZQoaAZoCWgPQwg+QWK7O5RwQJSGlFKUaBVNIwNoFkdAlyyCUornT3V9lChoBmgJaA9DCJc8npafPmxAlIaUUpRoFU0lAmgWR0CXLSI42jwhdX2UKGgGaAloD0MIyLYMOMujb0CUhpRSlGgVTYIBaBZHQJctLYywfQt1fZQoaAZoCWgPQwj9ag4QzORxQJSGlFKUaBVNNwFoFkdAly5G/Firk3V9lChoBmgJaA9DCMWu7e0W52xAlIaUUpRoFU06A2gWR0CXLpKbayrxdX2UKGgGaAloD0MIvAUSFH85cUCUhpRSlGgVTZgBaBZHQJcxQPvrnkl1fZQoaAZoCWgPQwg0vi8u1WxwQJSGlFKUaBVNSwFoFkdAlzOywW3z+XV9lChoBmgJaA9DCELsTKFzBnBAlIaUUpRoFU0/AWgWR0CXNJ2HLzPKdX2UKGgGaAloD0MIXFoNiTuhcECUhpRSlGgVTTYBaBZHQJc1CmWMS9N1fZQoaAZoCWgPQwjwhjQqsKdwQJSGlFKUaBVNVgFoFkdAlzWehsZYP3V9lChoBmgJaA9DCCO8PQgB4m5AlIaUUpRoFU2TAWgWR0CXN0mOlwcYdX2UKGgGaAloD0MI8YEd/4U+cUCUhpRSlGgVTXECaBZHQJc5nUKArhB1fZQoaAZoCWgPQwgK3Lqb59pyQJSGlFKUaBVNLgJoFkdAlzmqmoBJZnV9lChoBmgJaA9DCIJWYMhqyXFAlIaUUpRoFU0mAmgWR0CXPPVsUIszdX2UKGgGaAloD0MIEqPnFrpkcUCUhpRSlGgVTWcBaBZHQJc+H6fra/R1fZQoaAZoCWgPQwg6zm3C/dhwQJSGlFKUaBVNlAFoFkdAl0EZzDGcWnV9lChoBmgJaA9DCIbGE0GcZUtAlIaUUpRoFU0CAWgWR0CXQqL4vexfdX2UKGgGaAloD0MIGXJsPcPTbkCUhpRSlGgVTb4BaBZHQJdC4aNuLrJ1fZQoaAZoCWgPQwjysbtAyRNvQJSGlFKUaBVNIwJoFkdAl0N0+X7cf3V9lChoBmgJaA9DCG10zk/xzG1AlIaUUpRoFU20AWgWR0CXRL+IuXeFdX2UKGgGaAloD0MIVaNXAxQFcUCUhpRSlGgVTb8BaBZHQJdJz0I1LrZ1fZQoaAZoCWgPQwjt8UI6vMpvQJSGlFKUaBVNcAFoFkdAl0nz3RG+bnV9lChoBmgJaA9DCM7/q44cL0FAlIaUUpRoFU0IAWgWR0CXTaEAHVwxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.26.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d4055a43fb56f13b4e66ce9cefe7ac554ea94acabed49c513c57aca795cbc7c
|
3 |
+
size 148092
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6900cb32e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6900cb3370>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6900cb3400>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6900cb3490>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6900cb3520>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6900cb35b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6900cb3640>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6900cb36d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6900cb3760>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6900cb37f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6900cb3880>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6900cb3910>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f6900ca3700>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVYAIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
|
27 |
+
"dtype": "float32",
|
28 |
+
"bounded_below": "[ True True True True True True True True]",
|
29 |
+
"bounded_above": "[ True True True True True True True True]",
|
30 |
+
"_shape": [
|
31 |
+
8
|
32 |
+
],
|
33 |
+
"low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
34 |
+
"high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
|
35 |
+
"low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
36 |
+
"high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
|
37 |
+
"_np_random": null
|
38 |
+
},
|
39 |
+
"action_space": {
|
40 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
41 |
+
":serialized:": "gAWVkgAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
42 |
+
"n": 4,
|
43 |
+
"start": 0,
|
44 |
+
"_shape": [],
|
45 |
+
"dtype": "int64",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"n_envs": 16,
|
49 |
+
"num_timesteps": 1015808,
|
50 |
+
"_total_timesteps": 1000000,
|
51 |
+
"_num_timesteps_at_start": 0,
|
52 |
+
"seed": null,
|
53 |
+
"action_noise": null,
|
54 |
+
"start_time": 1683189014929415309,
|
55 |
+
"learning_rate": 0.0003,
|
56 |
+
"tensorboard_log": null,
|
57 |
+
"lr_schedule": {
|
58 |
+
":type:": "<class 'function'>",
|
59 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
60 |
+
},
|
61 |
+
"_last_obs": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALN7SL1I/6K6FjvVuvON27WnbQ66YzL1OQAAgD8AAIA/mkHgvB/dqrk8q7o7PO6auelfLrqV0Ni6AACAPwAAgD+AGNq9hJc4Pq6rGz5ffHO++8ZFPSI0JL0AAAAAAAAAANr0gj0A/MI+F+G1vTTRiL7bTxs91jDYvAAAAAAAAAAAZk6gvCmQd7rm8ns5kS8nNChoRDrlzo+4AACAPwAAgD9m/tK8AwJsvDeZCDu3XF48IC1IPSpyuT0AAIA/AACAPzM4hT1SLLI/ti4cP7xiUL4UVzu46QUmPgAAAAAAAAAAs0cGvdTDyT3olko+JiCRvuC1hT1ahlG9AAAAAAAAAAAA/YG8xmWGPuwkDL3sRi2+QeOQvfZIVz0AAAAAAAAAAMZmkz76RjA/r6SdOyPDmb43MpA+KEltvgAAAAAAAAAAZh4PO1wXZLo60IG5Rxa1tJM6Djs6N5Y4AACAPwAAgD8N8oi9w0EAuhif7zie4x40BLAeuvDSDLgAAIA/AACAPwDBhrwU9JS6Ni/iuu9OA7beMhy5ZfUCOgAAgD8AAIA/Rog1vlJBWT9QUJ69f8drvuLKR75k87o9AAAAAAAAAAAaRje91EaNPoPg7rxzJHW+78xQvShgv70AAAAAAAAAAA0D0r0U8Ly6tHTKOZM4xjRwNbM5xfzmuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_episode_starts": {
|
66 |
+
":type:": "<class 'numpy.ndarray'>",
|
67 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
68 |
+
},
|
69 |
+
"_last_original_obs": null,
|
70 |
+
"_episode_num": 0,
|
71 |
+
"use_sde": false,
|
72 |
+
"sde_sample_freq": -1,
|
73 |
+
"_current_progress_remaining": -0.015808000000000044,
|
74 |
+
"ep_info_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXoQpyqXbYUCUhpRSlIwBbJRN6AOMAXSUR0CWR+9t/FzddX2UKGgGaAloD0MIoRNCB13wbUCUhpRSlGgVTYYCaBZHQJZXB92HLzR1fZQoaAZoCWgPQwicFrzoqyxlQJSGlFKUaBVN6ANoFkdAllhtoi9qUXV9lChoBmgJaA9DCK29T1WhwGZAlIaUUpRoFU3oA2gWR0CWX1xFiKBNdX2UKGgGaAloD0MIbAcj9ommbkCUhpRSlGgVTTsCaBZHQJZjV24d6s11fZQoaAZoCWgPQwi0d0ZbVaJwQJSGlFKUaBVNogFoFkdAlmY2Op84P3V9lChoBmgJaA9DCCCZDp2eLGBAlIaUUpRoFU3oA2gWR0CWanmR/3FldX2UKGgGaAloD0MIRwN4C6SPYkCUhpRSlGgVTegDaBZHQJZvorupjtp1fZQoaAZoCWgPQwjlQ1A1+mpkQJSGlFKUaBVN6ANoFkdAlm+xO1v2oXV9lChoBmgJaA9DCDM1Cd6Q5mNAlIaUUpRoFU3oA2gWR0CWcFw9aEBbdX2UKGgGaAloD0MIJhqk4KnnYUCUhpRSlGgVTegDaBZHQJaDyZYxL011fZQoaAZoCWgPQwi/ub963BtmQJSGlFKUaBVN6ANoFkdAloT+P7vXsnV9lChoBmgJaA9DCGr2QCuwfm1AlIaUUpRoFU2TAWgWR0CWiX/mT1TSdX2UKGgGaAloD0MIEmiwqfNoYkCUhpRSlGgVTegDaBZHQJaJyZLIxQB1fZQoaAZoCWgPQwizz2OU58txQJSGlFKUaBVN9AFoFkdAlox9WuHN5nV9lChoBmgJaA9DCP61vHK92WNAlIaUUpRoFU3oA2gWR0CWjLQ40dildX2UKGgGaAloD0MIZmzoZj9hcUCUhpRSlGgVTWsDaBZHQJaRXst03fh1fZQoaAZoCWgPQwj1g7pIoZJmQJSGlFKUaBVN6ANoFkdAlpTkLDye7XV9lChoBmgJaA9DCKIqptJPX1xAlIaUUpRoFU3oA2gWR0CWlasF+uvEdX2UKGgGaAloD0MIdGGkF7WIa0CUhpRSlGgVTf8BaBZHQJal3ZVXFLp1fZQoaAZoCWgPQwjPa+wSVc1mQJSGlFKUaBVN6ANoFkdAlqhKWLP2PHV9lChoBmgJaA9DCOHwgojUtGdAlIaUUpRoFU3oA2gWR0CWqT7btZ3cdX2UKGgGaAloD0MI7zuGx/7dcUCUhpRSlGgVTa4BaBZHQJapq6e5Fw11fZQoaAZoCWgPQwiQEVDhiOttQJSGlFKUaBVN9QFoFkdAlqsBXfZVXHV9lChoBmgJaA9DCE/JObGH83BAlIaUUpRoFU3JAmgWR0CWrI+2E0zkdX2UKGgGaAloD0MILLZJRSM+cECUhpRSlGgVTWoBaBZHQJasqvUz9CN1fZQoaAZoCWgPQwivldBdklJjQJSGlFKUaBVN6ANoFkdAlrF6C6H0snV9lChoBmgJaA9DCAqgGFkyTHBAlIaUUpRoFU1RA2gWR0CWskKHfuTidX2UKGgGaAloD0MI06BoHsBwYkCUhpRSlGgVTegDaBZHQJa00CHRCyB1fZQoaAZoCWgPQwh4mWGjrCdHQJSGlFKUaBVL6mgWR0CWt6B0ZFXrdX2UKGgGaAloD0MInOCbps9RZ0CUhpRSlGgVTegDaBZHQJa5nHwPRRd1fZQoaAZoCWgPQwiGVidnKNdfQJSGlFKUaBVN6ANoFkdAltDN4RmK7HV9lChoBmgJaA9DCAVOtoE7/XBAlIaUUpRoFU24AWgWR0CW01qHXVbzdX2UKGgGaAloD0MIlWHcDSKMa0CUhpRSlGgVTQkDaBZHQJbVtlvqC6J1fZQoaAZoCWgPQwglICbhgmZwQJSGlFKUaBVNzAFoFkdAlteM8YAKfHV9lChoBmgJaA9DCBMM5xpmc2VAlIaUUpRoFU3oA2gWR0CW2ZQOFxn4dX2UKGgGaAloD0MIZED2eveKUECUhpRSlGgVS+BoFkdAlttQbVBlc3V9lChoBmgJaA9DCOVEuwop9V1AlIaUUpRoFU3oA2gWR0CW2/2606YFdX2UKGgGaAloD0MIqUvGMRKUbECUhpRSlGgVTbIDaBZHQJbczP0I1Lt1fZQoaAZoCWgPQwj9FMeBF2NxQJSGlFKUaBVNWgJoFkdAlt21FDv3J3V9lChoBmgJaA9DCFtfJLRlxHFAlIaUUpRoFU1LAWgWR0CW3rAY51eTdX2UKGgGaAloD0MIG0rtRbRAb0CUhpRSlGgVTUACaBZHQJbfDvw3HaN1fZQoaAZoCWgPQwhvZ195EEJvQJSGlFKUaBVNswJoFkdAluCRDb8FZHV9lChoBmgJaA9DCD1H5LsU53FAlIaUUpRoFU3dAmgWR0CW4Keq7yxzdX2UKGgGaAloD0MI5bm+D0dFckCUhpRSlGgVTQwCaBZHQJbhRvqC6H11fZQoaAZoCWgPQwghyhe0EOVrQJSGlFKUaBVN9gFoFkdAluM9waR6nnV9lChoBmgJaA9DCPm84qlHrm5AlIaUUpRoFU1dAWgWR0CW5QoDxLCfdX2UKGgGaAloD0MI3LxxUhg5cECUhpRSlGgVTVoBaBZHQJbmJyR0U491fZQoaAZoCWgPQwjm54am7KlxQJSGlFKUaBVNLgFoFkdAluapN47ihnV9lChoBmgJaA9DCBmO5zOgmW9AlIaUUpRoFU3bAWgWR0CW6R7ojfNzdX2UKGgGaAloD0MIkV8/xAZDcUCUhpRSlGgVTSYBaBZHQJbp/2Xb/Ot1fZQoaAZoCWgPQwiuug7VFH9wQJSGlFKUaBVNVwFoFkdAlutZiuuA7XV9lChoBmgJaA9DCC9SKAvfe29AlIaUUpRoFU1oAWgWR0CW62UcGTs6dX2UKGgGaAloD0MIwVPIlToacECUhpRSlGgVTTUBaBZHQJbuo2DQJHB1fZQoaAZoCWgPQwhe8dQjDQ9tQJSGlFKUaBVNOgNoFkdAlu8iofjjrHV9lChoBmgJaA9DCAfPhCYJa3BAlIaUUpRoFU3GAWgWR0CW7z0UoKD1dX2UKGgGaAloD0MI1eqrqwKpckCUhpRSlGgVTWIBaBZHQJbv6l67dzp1fZQoaAZoCWgPQwhkk/yIHyBwQJSGlFKUaBVNNAFoFkdAlvlg3PzFuXV9lChoBmgJaA9DCGOZfon4eXFAlIaUUpRoFU3IAWgWR0CW/O5rP+n7dX2UKGgGaAloD0MISfQyiuWdbECUhpRSlGgVTY4CaBZHQJb9vQiRnvl1fZQoaAZoCWgPQwjlKEAUjJdwQJSGlFKUaBVNNANoFkdAlv9g1vVEu3V9lChoBmgJaA9DCDKvIw4ZvnFAlIaUUpRoFU1BAWgWR0CXAHvwVj7RdX2UKGgGaAloD0MIRfC/lWzab0CUhpRSlGgVTTQCaBZHQJcE5ECvHLl1fZQoaAZoCWgPQwgY6xuYHG5yQJSGlFKUaBVNpQFoFkdAlxwoIOYplXV9lChoBmgJaA9DCChlUkObm3JAlIaUUpRoFU0bAmgWR0CXHh9ORDCxdX2UKGgGaAloD0MIzeSbba5YcUCUhpRSlGgVTSoCaBZHQJce8cHWz4V1fZQoaAZoCWgPQwjbiv1ld9VvQJSGlFKUaBVN/QJoFkdAlx/9J8OTaHV9lChoBmgJaA9DCFsKSPvfnnBAlIaUUpRoFU2NAmgWR0CXIVJBPbfxdX2UKGgGaAloD0MIXYyBdZzUa0CUhpRSlGgVTe8CaBZHQJchemVJL/V1fZQoaAZoCWgPQwglsg+ybLtxQJSGlFKUaBVNFwFoFkdAlyTVCPZIx3V9lChoBmgJaA9DCAqhgy5hkHFAlIaUUpRoFU2rAWgWR0CXJhaef7JodX2UKGgGaAloD0MIKes3E9P7Y0CUhpRSlGgVTegDaBZHQJcmIdZJTVF1fZQoaAZoCWgPQwj3IW+5eqdvQJSGlFKUaBVNxwNoFkdAlyZcriEQG3V9lChoBmgJaA9DCKSqCaJu6XBAlIaUUpRoFU0VAWgWR0CXJ1TPBzmwdX2UKGgGaAloD0MIY2GInD7+cECUhpRSlGgVTYIBaBZHQJcnYVEd/8V1fZQoaAZoCWgPQwiXqx+b5C1yQJSGlFKUaBVNdwFoFkdAlygHEMspX3V9lChoBmgJaA9DCICbxYuFETFAlIaUUpRoFUviaBZHQJco7OX3QD51fZQoaAZoCWgPQwg+QWK7O5RwQJSGlFKUaBVNIwNoFkdAlyyCUornT3V9lChoBmgJaA9DCJc8npafPmxAlIaUUpRoFU0lAmgWR0CXLSI42jwhdX2UKGgGaAloD0MIyLYMOMujb0CUhpRSlGgVTYIBaBZHQJctLYywfQt1fZQoaAZoCWgPQwj9ag4QzORxQJSGlFKUaBVNNwFoFkdAly5G/Firk3V9lChoBmgJaA9DCMWu7e0W52xAlIaUUpRoFU06A2gWR0CXLpKbayrxdX2UKGgGaAloD0MIvAUSFH85cUCUhpRSlGgVTZgBaBZHQJcxQPvrnkl1fZQoaAZoCWgPQwg0vi8u1WxwQJSGlFKUaBVNSwFoFkdAlzOywW3z+XV9lChoBmgJaA9DCELsTKFzBnBAlIaUUpRoFU0/AWgWR0CXNJ2HLzPKdX2UKGgGaAloD0MIXFoNiTuhcECUhpRSlGgVTTYBaBZHQJc1CmWMS9N1fZQoaAZoCWgPQwjwhjQqsKdwQJSGlFKUaBVNVgFoFkdAlzWehsZYP3V9lChoBmgJaA9DCCO8PQgB4m5AlIaUUpRoFU2TAWgWR0CXN0mOlwcYdX2UKGgGaAloD0MI8YEd/4U+cUCUhpRSlGgVTXECaBZHQJc5nUKArhB1fZQoaAZoCWgPQwgK3Lqb59pyQJSGlFKUaBVNLgJoFkdAlzmqmoBJZnV9lChoBmgJaA9DCIJWYMhqyXFAlIaUUpRoFU0mAmgWR0CXPPVsUIszdX2UKGgGaAloD0MIEqPnFrpkcUCUhpRSlGgVTWcBaBZHQJc+H6fra/R1fZQoaAZoCWgPQwg6zm3C/dhwQJSGlFKUaBVNlAFoFkdAl0EZzDGcWnV9lChoBmgJaA9DCIbGE0GcZUtAlIaUUpRoFU0CAWgWR0CXQqL4vexfdX2UKGgGaAloD0MIGXJsPcPTbkCUhpRSlGgVTb4BaBZHQJdC4aNuLrJ1fZQoaAZoCWgPQwjysbtAyRNvQJSGlFKUaBVNIwJoFkdAl0N0+X7cf3V9lChoBmgJaA9DCG10zk/xzG1AlIaUUpRoFU20AWgWR0CXRL+IuXeFdX2UKGgGaAloD0MIVaNXAxQFcUCUhpRSlGgVTb8BaBZHQJdJz0I1LrZ1fZQoaAZoCWgPQwjt8UI6vMpvQJSGlFKUaBVNcAFoFkdAl0nz3RG+bnV9lChoBmgJaA9DCM7/q44cL0FAlIaUUpRoFU0IAWgWR0CXTaEAHVwxdWUu"
|
77 |
+
},
|
78 |
+
"ep_success_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
81 |
+
},
|
82 |
+
"_n_updates": 248,
|
83 |
+
"n_steps": 1024,
|
84 |
+
"gamma": 0.999,
|
85 |
+
"gae_lambda": 0.98,
|
86 |
+
"ent_coef": 0.01,
|
87 |
+
"vf_coef": 0.5,
|
88 |
+
"max_grad_norm": 0.5,
|
89 |
+
"batch_size": 64,
|
90 |
+
"n_epochs": 4,
|
91 |
+
"clip_range": {
|
92 |
+
":type:": "<class 'function'>",
|
93 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
94 |
+
},
|
95 |
+
"clip_range_vf": null,
|
96 |
+
"normalize_advantage": true,
|
97 |
+
"target_kl": null
|
98 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d4e87fe2d2235e8d1c58b6c6edd688df100c39f2015b861df828e25adbcac18
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9273bffb4d889d1d6ea3fd0e48b90e22db06e14c020477a6bff242d8f5723720
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.26.2
|
replay.mp4
ADDED
Binary file (162 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 244.6404239924919, "std_reward": 22.656992618963805, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-04T09:59:45.357964"}
|