Upload PPO LunarLander-v2 trained agent, ver 10
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +96 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 261.64 +/- 17.88
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb9ce503790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb9ce503820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb9ce5038b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb9ce503940>", "_build": "<function ActorCriticPolicy._build at 0x7fb9ce5039d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb9ce503a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb9ce503af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb9ce503b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb9ce503c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb9ce503ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb9ce503d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb9ce503dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb9ce509640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 753664, "_total_timesteps": 750000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682304825096178496, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa5LL2PagC6ejSIOrFvlrZDc4G74yufuQAAgD8AAIA/LZ4lPia/nz6V6vi9us2JvkRGvjysJEg7AAAAAAAAAABmFDe94eiSuqfJB7w6kU07CdjAt9F/F7wAAIA/AACAP80kSL17KrK63UuFO8vfEzi2zCw581getwAAgD8AAIA/+iU7vljBGD+JThQ+/fCcvoHFxbxFthQ+AAAAAAAAAADNyPG8XFM0ut7Bb7uSKCA46SyPO112DzoAAIA/AACAPwAZ+bz26G66kovxu2tNeDyFwfK6mpBXPQAAgD8AAIA/ZrY6vHtmoLogy7M7xPU6PFFkZDsSIB+9AACAPwAAgD+N6bq99ihoupPaAjkuFSE2yULmug+ZFrgAAIA/AACAP7MlLz323Hq6izfvOmASoTVO5E46ScILugAAgD8AAIA/Gh+0vaSACbl2zG27vEiuttdMl7uvy4w6AACAPwAAgD8Advy8XF92ulQIxzkx0we27kwlO/Cw47gAAIA/AACAP7Mbnr1cC1W6kmmSO5IWAjcL7KI69kqnugAAgD8AAIA/MzPMOPZ8OLqOvyS6Dexdtm16RDoRWzw5AACAPwAAgD8zJi+9KYg6uk3jUbnaxLe0AKs7OvZdcTgAAIA/AACAPwCKaDyP+jy6s9geu7Kjajyv0O06b1KjOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITQ8KSlH+YkCUhpRSlIwBbJRN6AOMAXSUR0ChknCqIacadX2UKGgGaAloD0MIzXhb6bVyXkCUhpRSlGgVTegDaBZHQKGV8UeMhox1fZQoaAZoCWgPQwjsvfiivVdlQJSGlFKUaBVN6ANoFkdAoZihzkp7TnV9lChoBmgJaA9DCDoF+dnInmRAlIaUUpRoFU3oA2gWR0ChmP1dX1aodX2UKGgGaAloD0MIyuGTTiSfYECUhpRSlGgVTegDaBZHQKGcVD0lJH11fZQoaAZoCWgPQwjcZFQZxmhcQJSGlFKUaBVN6ANoFkdAoZ7rNUwSJ3V9lChoBmgJaA9DCOmAJOzbI2VAlIaUUpRoFU3oA2gWR0Chn2YMvyskdX2UKGgGaAloD0MItU/HY4ZpYUCUhpRSlGgVTegDaBZHQKGf8pMpPRB1fZQoaAZoCWgPQwitbYrHRTRhQJSGlFKUaBVN6ANoFkdAoaDuHvc8DHV9lChoBmgJaA9DCNO/JJUpd11AlIaUUpRoFU3oA2gWR0ChovlW4mTldX2UKGgGaAloD0MI3C+frBg9YUCUhpRSlGgVTegDaBZHQKGk4u8scyZ1fZQoaAZoCWgPQwjU78LW7PRiQJSGlFKUaBVN6ANoFkdAoakitA9mpXV9lChoBmgJaA9DCEBOmDAaO2NAlIaUUpRoFU3oA2gWR0Chq8YUeuFIdX2UKGgGaAloD0MIx5+obNiLYECUhpRSlGgVTegDaBZHQKGt6cFyJbd1fZQoaAZoCWgPQwhGIjSCje9iQJSGlFKUaBVN6ANoFkdAoa/oQxveg3V9lChoBmgJaA9DCJhNgGF5ZGFAlIaUUpRoFU3oA2gWR0ChslSU1Q67dX2UKGgGaAloD0MI4Ln3cMmLRUCUhpRSlGgVS8xoFkdAobJbX6InB3V9lChoBmgJaA9DCGDoEaNn/mFAlIaUUpRoFU3oA2gWR0Chs9cdPtUodX2UKGgGaAloD0MI+rZgqa56YECUhpRSlGgVTegDaBZHQKG21jCpFTh1fZQoaAZoCWgPQwjBqQ8k72xiQJSGlFKUaBVN6ANoFkdAobkGUhV2inV9lChoBmgJaA9DCI9yMJuAdGBAlIaUUpRoFU3oA2gWR0ChuVy1eBxxdX2UKGgGaAloD0MIisiwijehZECUhpRSlGgVTegDaBZHQKG81g4wRGt1fZQoaAZoCWgPQwgT8kHPZjZhQJSGlFKUaBVN6ANoFkdAocBeQZGayHV9lChoBmgJaA9DCEdWfhmMuWBAlIaUUpRoFU3oA2gWR0ChwPoLw4KhdX2UKGgGaAloD0MIls0cklo+YUCUhpRSlGgVTegDaBZHQKHBkbz9S/F1fZQoaAZoCWgPQwgAOWHCaN9hQJSGlFKUaBVN6ANoFkdAocKRydWhiHV9lChoBmgJaA9DCHLFxVG5aWNAlIaUUpRoFU3oA2gWR0ChxAlEJBw/dX2UKGgGaAloD0MIl/26051QV0CUhpRSlGgVTegDaBZHQKHFT0UXYUZ1fZQoaAZoCWgPQwhgBfhu83ZfQJSGlFKUaBVN6ANoFkdAocidRYRuj3V9lChoBmgJaA9DCBdGelE7QmZAlIaUUpRoFU3oA2gWR0ChzS2DHwPRdX2UKGgGaAloD0MIQIUjSKWqZECUhpRSlGgVTegDaBZHQKHpIlsP8Q91fZQoaAZoCWgPQwiDNGPRdN9gQJSGlFKUaBVN6ANoFkdAoeud+w1R+HV9lChoBmgJaA9DCDUlWYejOGRAlIaUUpRoFU3oA2gWR0Ch66P5HmRvdX2UKGgGaAloD0MI/MdCdAg/ZkCUhpRSlGgVTegDaBZHQKHtDzWf9P11fZQoaAZoCWgPQwhcWaKzzB1hQJSGlFKUaBVN6ANoFkdAofCbdxhlUnV9lChoBmgJaA9DCMIv9fMmhWFAlIaUUpRoFU3oA2gWR0Ch86S/bj95dX2UKGgGaAloD0MIBb8NMV7VYUCUhpRSlGgVTegDaBZHQKH0DNdJJ5F1fZQoaAZoCWgPQwilwAKYshhmQJSGlFKUaBVN6ANoFkdAofb0FY+0PnV9lChoBmgJaA9DCA2mYfiIgGFAlIaUUpRoFU3oA2gWR0Ch+Vh0Qsf8dX2UKGgGaAloD0MIar5KPvYBZECUhpRSlGgVTegDaBZHQKH5zk/bCaZ1fZQoaAZoCWgPQwjlKha/qVpgQJSGlFKUaBVN6ANoFkdAofpPv4M4LnV9lChoBmgJaA9DCKT7OQX5TWFAlIaUUpRoFU3oA2gWR0Ch+zutwJgLdX2UKGgGaAloD0MIucK7XMTYXkCUhpRSlGgVTegDaBZHQKH8hM/yGzt1fZQoaAZoCWgPQwhyM9yATyRlQJSGlFKUaBVN6ANoFkdAof3APGyX2XV9lChoBmgJaA9DCIQpyqVxAGFAlIaUUpRoFU3oA2gWR0CiAQx/EwWWdX2UKGgGaAloD0MIj95wH7lrT0CUhpRSlGgVS8loFkdAogHU2Hck+3V9lChoBmgJaA9DCGHB/YAHA2FAlIaUUpRoFU3oA2gWR0CiBVPo3aSLdX2UKGgGaAloD0MI7bjhd9PQY0CUhpRSlGgVTegDaBZHQKIHLUlRgqp1fZQoaAZoCWgPQwga3NYWnrBkQJSGlFKUaBVN6ANoFkdAogpHzJ6ppHV9lChoBmgJaA9DCPK1Z5YEZ11AlIaUUpRoFU3oA2gWR0CiCk6w2VFAdX2UKGgGaAloD0MI+83EdKECZECUhpRSlGgVTegDaBZHQKIMZ/ZuhsZ1fZQoaAZoCWgPQwj61LFK6YBiQJSGlFKUaBVN6ANoFkdAog/BRl6JInV9lChoBmgJaA9DCC1b64sE52FAlIaUUpRoFU3oA2gWR0CiEf4UFjd6dX2UKGgGaAloD0MIEeSghJlMXkCUhpRSlGgVTegDaBZHQKISU5o4+8p1fZQoaAZoCWgPQwiD3htDgPVlQJSGlFKUaBVN6ANoFkdAohWM6FM7EHV9lChoBmgJaA9DCOs1PSgojGNAlIaUUpRoFU3oA2gWR0CiGCjqGDcudX2UKGgGaAloD0MIXYlA9Q9nXkCUhpRSlGgVTegDaBZHQKIYruy/sVt1fZQoaAZoCWgPQwjuzW+YaGAzQJSGlFKUaBVL2GgWR0CiGOCsOoYOdX2UKGgGaAloD0MIIQclzDRiY0CUhpRSlGgVTegDaBZHQKIZT0zTF2p1fZQoaAZoCWgPQwhw0jQomnpjQJSGlFKUaBVN6ANoFkdAohpdNSIgvHV9lChoBmgJaA9DCLnEkQci12FAlIaUUpRoFU3oA2gWR0CiHVYP5HmSdX2UKGgGaAloD0MIZTkJpS/OSUCUhpRSlGgVS9toFkdAoh8TpaA4GXV9lChoBmgJaA9DCOdUMgBUWmRAlIaUUpRoFU3oA2gWR0CiIRGtITXbdX2UKGgGaAloD0MIRgckYd/5ZECUhpRSlGgVTegDaBZHQKIiBg5R0lt1fZQoaAZoCWgPQwium1JeKw1bQJSGlFKUaBVN6ANoFkdAoidezfJmunV9lChoBmgJaA9DCLFs5pDUfmRAlIaUUpRoFU3oA2gWR0CiKU8cuJ1rdX2UKGgGaAloD0MIwt1Zu20rYkCUhpRSlGgVTegDaBZHQKJHBJ2dNFl1fZQoaAZoCWgPQwhAwcWKmshhQJSGlFKUaBVN6ANoFkdAokcLqMWGh3V9lChoBmgJaA9DCOfDswSZKmFAlIaUUpRoFU3oA2gWR0CiSLs7lq8EdX2UKGgGaAloD0MIL4hITbv+YECUhpRSlGgVTegDaBZHQKJLnFuNxVB1fZQoaAZoCWgPQwjjxcIQuSFjQJSGlFKUaBVN6ANoFkdAok4XmV7hN3V9lChoBmgJaA9DCLpnXaPl42VAlIaUUpRoFU3oA2gWR0CiUW9XLeQ/dX2UKGgGaAloD0MIM/ynG6hyYkCUhpRSlGgVTegDaBZHQKJUILgn+hp1fZQoaAZoCWgPQwiXdf9YCINlQJSGlFKUaBVN6ANoFkdAolTavq1PWXV9lChoBmgJaA9DCH6s4Lchf2JAlIaUUpRoFU3oA2gWR0CiVWvGyX2NdX2UKGgGaAloD0MI8guvJPmMZUCUhpRSlGgVTegDaBZHQKJW9R/mT1V1fZQoaAZoCWgPQwjIBtLFJpFiQJSGlFKUaBVN6ANoFkdAoltFtQ9A5nV9lChoBmgJaA9DCOTYeobw2GdAlIaUUpRoFU3oA2gWR0CiXR8/D+BIdX2UKGgGaAloD0MItOOG383qZkCUhpRSlGgVTegDaBZHQKJfB5WzWwx1fZQoaAZoCWgPQwhIUz2Z/1xjQJSGlFKUaBVN6ANoFkdAol/awjdHlXV9lChoBmgJaA9DCBLAzeLFNGFAlIaUUpRoFU3oA2gWR0CiY45EUj9odX2UKGgGaAloD0MIPx9lxAXlYkCUhpRSlGgVTegDaBZHQKJlZpsXSBt1fZQoaAZoCWgPQwi+aI8X0s5kQJSGlFKUaBVN6ANoFkdAomjLmhdt23V9lChoBmgJaA9DCExtqYM822JAlIaUUpRoFU3oA2gWR0CiaNFmOEM9dX2UKGgGaAloD0MI5nlwd9ZZYECUhpRSlGgVTegDaBZHQKJqQggX/HZ1fZQoaAZoCWgPQwiHTs+7sbpGQJSGlFKUaBVL0WgWR0CibJI2wV0tdX2UKGgGaAloD0MI1A/qIoUdZUCUhpRSlGgVTegDaBZHQKJtERvm5lR1fZQoaAZoCWgPQwiwyoXKP1hmQJSGlFKUaBVN6ANoFkdAom/9+I/JNnV9lChoBmgJaA9DCJ57D5ccd1dAlIaUUpRoFU3oA2gWR0CidLQEyLyddX2UKGgGaAloD0MIY7fPKrMyZUCUhpRSlGgVTegDaBZHQKJ3hNFjNIN1fZQoaAZoCWgPQwiqtpvgG7dnQJSGlFKUaBVN6ANoFkdAonhOEVWS2nV9lChoBmgJaA9DCFnfwORGv2VAlIaUUpRoFU3oA2gWR0CieMg6EJ0GdX2UKGgGaAloD0MI3X2OjxbdYUCUhpRSlGgVTegDaBZHQKJ58vA44qB1fZQoaAZoCWgPQwgSoRFs3LBkQJSGlFKUaBVN6ANoFkdAonz9XeWOZXV9lChoBmgJaA9DCKG8j6M56EJAlIaUUpRoFUvJaBZHQKJ+aAaNuLt1fZQoaAZoCWgPQwgpr5XQXYNeQJSGlFKUaBVN6ANoFkdAon7D4DcM3XV9lChoBmgJaA9DCJ7wEpz6jV5AlIaUUpRoFU3oA2gWR0CigJbMPjGUdX2UKGgGaAloD0MIgqs8gTDxZ0CUhpRSlGgVTegDaBZHQKKBX2IO6NF1fZQoaAZoCWgPQwijBtMwfEVkQJSGlFKUaBVN6ANoFkdAooS6lzltCXV9lChoBmgJaA9DCAbZsnxdek9AlIaUUpRoFUuraBZHQKKFY9FnZkF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 138, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb8382c63a95e8c32a8c90a52680b68b0caa23e45dbab0be86549df7cd5cdd3a
|
3 |
+
size 147385
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb9ce503790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb9ce503820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb9ce5038b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb9ce503940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb9ce5039d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb9ce503a60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb9ce503af0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb9ce503b80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb9ce503c10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb9ce503ca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb9ce503d30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb9ce503dc0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb9ce509640>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 753664,
|
25 |
+
"_total_timesteps": 750000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682304825096178496,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa5LL2PagC6ejSIOrFvlrZDc4G74yufuQAAgD8AAIA/LZ4lPia/nz6V6vi9us2JvkRGvjysJEg7AAAAAAAAAABmFDe94eiSuqfJB7w6kU07CdjAt9F/F7wAAIA/AACAP80kSL17KrK63UuFO8vfEzi2zCw581getwAAgD8AAIA/+iU7vljBGD+JThQ+/fCcvoHFxbxFthQ+AAAAAAAAAADNyPG8XFM0ut7Bb7uSKCA46SyPO112DzoAAIA/AACAPwAZ+bz26G66kovxu2tNeDyFwfK6mpBXPQAAgD8AAIA/ZrY6vHtmoLogy7M7xPU6PFFkZDsSIB+9AACAPwAAgD+N6bq99ihoupPaAjkuFSE2yULmug+ZFrgAAIA/AACAP7MlLz323Hq6izfvOmASoTVO5E46ScILugAAgD8AAIA/Gh+0vaSACbl2zG27vEiuttdMl7uvy4w6AACAPwAAgD8Advy8XF92ulQIxzkx0we27kwlO/Cw47gAAIA/AACAP7Mbnr1cC1W6kmmSO5IWAjcL7KI69kqnugAAgD8AAIA/MzPMOPZ8OLqOvyS6Dexdtm16RDoRWzw5AACAPwAAgD8zJi+9KYg6uk3jUbnaxLe0AKs7OvZdcTgAAIA/AACAPwCKaDyP+jy6s9geu7Kjajyv0O06b1KjOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.004885333333333408,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITQ8KSlH+YkCUhpRSlIwBbJRN6AOMAXSUR0ChknCqIacadX2UKGgGaAloD0MIzXhb6bVyXkCUhpRSlGgVTegDaBZHQKGV8UeMhox1fZQoaAZoCWgPQwjsvfiivVdlQJSGlFKUaBVN6ANoFkdAoZihzkp7TnV9lChoBmgJaA9DCDoF+dnInmRAlIaUUpRoFU3oA2gWR0ChmP1dX1aodX2UKGgGaAloD0MIyuGTTiSfYECUhpRSlGgVTegDaBZHQKGcVD0lJH11fZQoaAZoCWgPQwjcZFQZxmhcQJSGlFKUaBVN6ANoFkdAoZ7rNUwSJ3V9lChoBmgJaA9DCOmAJOzbI2VAlIaUUpRoFU3oA2gWR0Chn2YMvyskdX2UKGgGaAloD0MItU/HY4ZpYUCUhpRSlGgVTegDaBZHQKGf8pMpPRB1fZQoaAZoCWgPQwitbYrHRTRhQJSGlFKUaBVN6ANoFkdAoaDuHvc8DHV9lChoBmgJaA9DCNO/JJUpd11AlIaUUpRoFU3oA2gWR0ChovlW4mTldX2UKGgGaAloD0MI3C+frBg9YUCUhpRSlGgVTegDaBZHQKGk4u8scyZ1fZQoaAZoCWgPQwjU78LW7PRiQJSGlFKUaBVN6ANoFkdAoakitA9mpXV9lChoBmgJaA9DCEBOmDAaO2NAlIaUUpRoFU3oA2gWR0Chq8YUeuFIdX2UKGgGaAloD0MIx5+obNiLYECUhpRSlGgVTegDaBZHQKGt6cFyJbd1fZQoaAZoCWgPQwhGIjSCje9iQJSGlFKUaBVN6ANoFkdAoa/oQxveg3V9lChoBmgJaA9DCJhNgGF5ZGFAlIaUUpRoFU3oA2gWR0ChslSU1Q67dX2UKGgGaAloD0MI4Ln3cMmLRUCUhpRSlGgVS8xoFkdAobJbX6InB3V9lChoBmgJaA9DCGDoEaNn/mFAlIaUUpRoFU3oA2gWR0Chs9cdPtUodX2UKGgGaAloD0MI+rZgqa56YECUhpRSlGgVTegDaBZHQKG21jCpFTh1fZQoaAZoCWgPQwjBqQ8k72xiQJSGlFKUaBVN6ANoFkdAobkGUhV2inV9lChoBmgJaA9DCI9yMJuAdGBAlIaUUpRoFU3oA2gWR0ChuVy1eBxxdX2UKGgGaAloD0MIisiwijehZECUhpRSlGgVTegDaBZHQKG81g4wRGt1fZQoaAZoCWgPQwgT8kHPZjZhQJSGlFKUaBVN6ANoFkdAocBeQZGayHV9lChoBmgJaA9DCEdWfhmMuWBAlIaUUpRoFU3oA2gWR0ChwPoLw4KhdX2UKGgGaAloD0MIls0cklo+YUCUhpRSlGgVTegDaBZHQKHBkbz9S/F1fZQoaAZoCWgPQwgAOWHCaN9hQJSGlFKUaBVN6ANoFkdAocKRydWhiHV9lChoBmgJaA9DCHLFxVG5aWNAlIaUUpRoFU3oA2gWR0ChxAlEJBw/dX2UKGgGaAloD0MIl/26051QV0CUhpRSlGgVTegDaBZHQKHFT0UXYUZ1fZQoaAZoCWgPQwhgBfhu83ZfQJSGlFKUaBVN6ANoFkdAocidRYRuj3V9lChoBmgJaA9DCBdGelE7QmZAlIaUUpRoFU3oA2gWR0ChzS2DHwPRdX2UKGgGaAloD0MIQIUjSKWqZECUhpRSlGgVTegDaBZHQKHpIlsP8Q91fZQoaAZoCWgPQwiDNGPRdN9gQJSGlFKUaBVN6ANoFkdAoeud+w1R+HV9lChoBmgJaA9DCDUlWYejOGRAlIaUUpRoFU3oA2gWR0Ch66P5HmRvdX2UKGgGaAloD0MI/MdCdAg/ZkCUhpRSlGgVTegDaBZHQKHtDzWf9P11fZQoaAZoCWgPQwhcWaKzzB1hQJSGlFKUaBVN6ANoFkdAofCbdxhlUnV9lChoBmgJaA9DCMIv9fMmhWFAlIaUUpRoFU3oA2gWR0Ch86S/bj95dX2UKGgGaAloD0MIBb8NMV7VYUCUhpRSlGgVTegDaBZHQKH0DNdJJ5F1fZQoaAZoCWgPQwilwAKYshhmQJSGlFKUaBVN6ANoFkdAofb0FY+0PnV9lChoBmgJaA9DCA2mYfiIgGFAlIaUUpRoFU3oA2gWR0Ch+Vh0Qsf8dX2UKGgGaAloD0MIar5KPvYBZECUhpRSlGgVTegDaBZHQKH5zk/bCaZ1fZQoaAZoCWgPQwjlKha/qVpgQJSGlFKUaBVN6ANoFkdAofpPv4M4LnV9lChoBmgJaA9DCKT7OQX5TWFAlIaUUpRoFU3oA2gWR0Ch+zutwJgLdX2UKGgGaAloD0MIucK7XMTYXkCUhpRSlGgVTegDaBZHQKH8hM/yGzt1fZQoaAZoCWgPQwhyM9yATyRlQJSGlFKUaBVN6ANoFkdAof3APGyX2XV9lChoBmgJaA9DCIQpyqVxAGFAlIaUUpRoFU3oA2gWR0CiAQx/EwWWdX2UKGgGaAloD0MIj95wH7lrT0CUhpRSlGgVS8loFkdAogHU2Hck+3V9lChoBmgJaA9DCGHB/YAHA2FAlIaUUpRoFU3oA2gWR0CiBVPo3aSLdX2UKGgGaAloD0MI7bjhd9PQY0CUhpRSlGgVTegDaBZHQKIHLUlRgqp1fZQoaAZoCWgPQwga3NYWnrBkQJSGlFKUaBVN6ANoFkdAogpHzJ6ppHV9lChoBmgJaA9DCPK1Z5YEZ11AlIaUUpRoFU3oA2gWR0CiCk6w2VFAdX2UKGgGaAloD0MI+83EdKECZECUhpRSlGgVTegDaBZHQKIMZ/ZuhsZ1fZQoaAZoCWgPQwj61LFK6YBiQJSGlFKUaBVN6ANoFkdAog/BRl6JInV9lChoBmgJaA9DCC1b64sE52FAlIaUUpRoFU3oA2gWR0CiEf4UFjd6dX2UKGgGaAloD0MIEeSghJlMXkCUhpRSlGgVTegDaBZHQKISU5o4+8p1fZQoaAZoCWgPQwiD3htDgPVlQJSGlFKUaBVN6ANoFkdAohWM6FM7EHV9lChoBmgJaA9DCOs1PSgojGNAlIaUUpRoFU3oA2gWR0CiGCjqGDcudX2UKGgGaAloD0MIXYlA9Q9nXkCUhpRSlGgVTegDaBZHQKIYruy/sVt1fZQoaAZoCWgPQwjuzW+YaGAzQJSGlFKUaBVL2GgWR0CiGOCsOoYOdX2UKGgGaAloD0MIIQclzDRiY0CUhpRSlGgVTegDaBZHQKIZT0zTF2p1fZQoaAZoCWgPQwhw0jQomnpjQJSGlFKUaBVN6ANoFkdAohpdNSIgvHV9lChoBmgJaA9DCLnEkQci12FAlIaUUpRoFU3oA2gWR0CiHVYP5HmSdX2UKGgGaAloD0MIZTkJpS/OSUCUhpRSlGgVS9toFkdAoh8TpaA4GXV9lChoBmgJaA9DCOdUMgBUWmRAlIaUUpRoFU3oA2gWR0CiIRGtITXbdX2UKGgGaAloD0MIRgckYd/5ZECUhpRSlGgVTegDaBZHQKIiBg5R0lt1fZQoaAZoCWgPQwium1JeKw1bQJSGlFKUaBVN6ANoFkdAoidezfJmunV9lChoBmgJaA9DCLFs5pDUfmRAlIaUUpRoFU3oA2gWR0CiKU8cuJ1rdX2UKGgGaAloD0MIwt1Zu20rYkCUhpRSlGgVTegDaBZHQKJHBJ2dNFl1fZQoaAZoCWgPQwhAwcWKmshhQJSGlFKUaBVN6ANoFkdAokcLqMWGh3V9lChoBmgJaA9DCOfDswSZKmFAlIaUUpRoFU3oA2gWR0CiSLs7lq8EdX2UKGgGaAloD0MIL4hITbv+YECUhpRSlGgVTegDaBZHQKJLnFuNxVB1fZQoaAZoCWgPQwjjxcIQuSFjQJSGlFKUaBVN6ANoFkdAok4XmV7hN3V9lChoBmgJaA9DCLpnXaPl42VAlIaUUpRoFU3oA2gWR0CiUW9XLeQ/dX2UKGgGaAloD0MIM/ynG6hyYkCUhpRSlGgVTegDaBZHQKJUILgn+hp1fZQoaAZoCWgPQwiXdf9YCINlQJSGlFKUaBVN6ANoFkdAolTavq1PWXV9lChoBmgJaA9DCH6s4Lchf2JAlIaUUpRoFU3oA2gWR0CiVWvGyX2NdX2UKGgGaAloD0MI8guvJPmMZUCUhpRSlGgVTegDaBZHQKJW9R/mT1V1fZQoaAZoCWgPQwjIBtLFJpFiQJSGlFKUaBVN6ANoFkdAoltFtQ9A5nV9lChoBmgJaA9DCOTYeobw2GdAlIaUUpRoFU3oA2gWR0CiXR8/D+BIdX2UKGgGaAloD0MItOOG383qZkCUhpRSlGgVTegDaBZHQKJfB5WzWwx1fZQoaAZoCWgPQwhIUz2Z/1xjQJSGlFKUaBVN6ANoFkdAol/awjdHlXV9lChoBmgJaA9DCBLAzeLFNGFAlIaUUpRoFU3oA2gWR0CiY45EUj9odX2UKGgGaAloD0MIPx9lxAXlYkCUhpRSlGgVTegDaBZHQKJlZpsXSBt1fZQoaAZoCWgPQwi+aI8X0s5kQJSGlFKUaBVN6ANoFkdAomjLmhdt23V9lChoBmgJaA9DCExtqYM822JAlIaUUpRoFU3oA2gWR0CiaNFmOEM9dX2UKGgGaAloD0MI5nlwd9ZZYECUhpRSlGgVTegDaBZHQKJqQggX/HZ1fZQoaAZoCWgPQwiHTs+7sbpGQJSGlFKUaBVL0WgWR0CibJI2wV0tdX2UKGgGaAloD0MI1A/qIoUdZUCUhpRSlGgVTegDaBZHQKJtERvm5lR1fZQoaAZoCWgPQwiwyoXKP1hmQJSGlFKUaBVN6ANoFkdAom/9+I/JNnV9lChoBmgJaA9DCJ57D5ccd1dAlIaUUpRoFU3oA2gWR0CidLQEyLyddX2UKGgGaAloD0MIY7fPKrMyZUCUhpRSlGgVTegDaBZHQKJ3hNFjNIN1fZQoaAZoCWgPQwiqtpvgG7dnQJSGlFKUaBVN6ANoFkdAonhOEVWS2nV9lChoBmgJaA9DCFnfwORGv2VAlIaUUpRoFU3oA2gWR0CieMg6EJ0GdX2UKGgGaAloD0MI3X2OjxbdYUCUhpRSlGgVTegDaBZHQKJ58vA44qB1fZQoaAZoCWgPQwgSoRFs3LBkQJSGlFKUaBVN6ANoFkdAonz9XeWOZXV9lChoBmgJaA9DCKG8j6M56EJAlIaUUpRoFUvJaBZHQKJ+aAaNuLt1fZQoaAZoCWgPQwgpr5XQXYNeQJSGlFKUaBVN6ANoFkdAon7D4DcM3XV9lChoBmgJaA9DCJ7wEpz6jV5AlIaUUpRoFU3oA2gWR0CigJbMPjGUdX2UKGgGaAloD0MIgqs8gTDxZ0CUhpRSlGgVTegDaBZHQKKBX2IO6NF1fZQoaAZoCWgPQwijBtMwfEVkQJSGlFKUaBVN6ANoFkdAooS6lzltCXV9lChoBmgJaA9DCAbZsnxdek9AlIaUUpRoFUuraBZHQKKFY9FnZkF1ZS4="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 138,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 2048,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 6,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3998de0c21eb2d3741942bd6fd65ccc0e7145513a5422f7af0103ecfe04908dc
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b434e4bf79fb1b718454bea31b3b5c66f521434e06855ecf34be73f224f2c1d4
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (226 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 261.6426067544535, "std_reward": 17.8783742713099, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-24T03:14:13.965954"}
|