gwtaylor's picture
Replace all the "k-mer"s with "k_mer"s (#2)
29a6012 verified
model:
d_model: 384
n_layer: 2
d_inner: ${eval:4 * ${.d_model}}
vocab_size: ${tokenizer.vocab_size}
resid_dropout: 0.0
embed_dropout: 0.1
residual_in_fp32: true
pad_vocab_size_multiple: 8
mamba_ver: mamba2
layer:
d_model: ${model.d_model}
d_state: 64
d_conv: 4
expand: 2
headdim: 48
n_classes: null
dataset:
__train_len: ${div_up:1_000_000_000, ${.max_len}}
__l_max: ${.max_len}
randomize_offset: true
input_path: ./data/
max_len: 660
use_padding: true
add_eos: false
rc_aug: true
phase: pretrain
classify_level: null
num_workers: 0
batch_size: 16
pretrain_method: ntp
mask_ratio: 0.5
tokenizer:
use_unk_token: true
k_mer: 6
padding: true
padding_side: left
name: k_mer
stride: ${.k_mer}
max_len: ${dataset.max_len}
vocab_size: ${eval:4 ** ${.k_mer} + 3}
trainer:
accelerator: gpu
devices: -1
num_nodes: 1
max_epochs: 50
gradient_clip_val: 1.0
fast_dev_run: false
strategy: ddp
train:
logger: wandb
run_name: null
gpu_mem: ${eval:"round(float(__import__('subprocess').check_output('nvidia-smi -i
0 --query-gpu=memory.total --format=csv,noheader,nounits', shell=True).strip().decode())
/ 1000)"}
seed: 2222
global_batch_size: 256
ckpt: null
ema: 0.0
test: true
interval: step
monitor: val/loss_epoch
mode: min
validate_at_start: false
pretrained_model_strict_load: false
pretrained_model_path: null
scheduler:
t_in_epochs: false
t_initial: ${eval:${div_up:${dataset.__train_len}, ${train.global_batch_size}} *
${trainer.max_epochs}}
warmup_lr_init: 1.0e-06
warmup_t: ${eval:${div_up:${dataset.__train_len}, ${train.global_batch_size}} *
${trainer.max_epochs} * 0.01}
lr_min: ${eval:0.1 * ${optimizer.lr}}
optimizer:
lr: 0.0008
weight_decay: 0.1
betas:
- 0.9
- 0.999
model_checkpoint:
monitor: ${train.monitor}
mode: ${train.mode}
save_top_k: 1
save_last: true
dirpath: checkpoints/
filename: barcode-mamba-${dataset.phase}-{epoch:02d}
save_on_train_epoch_end: true
auto_insert_metric_name: true
verbose: true
debug: false