billray110
commited on
Commit
•
384c308
1
Parent(s):
e44e769
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.75 +/- 22.82
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f99312bf0a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f99312bf130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f99312bf1c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f99312bf250>", "_build": "<function ActorCriticPolicy._build at 0x7f99312bf2e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f99312bf370>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f99312bf400>", "_predict": "<function ActorCriticPolicy._predict at 0x7f99312bf490>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f99312bf520>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f99312bf5b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f99312bf640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f99312c4380>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672878389287229573, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL2JpbGwvZGV2L2RlZXAtcmwtY2xhc3MvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL2JpbGwvZGV2L2RlZXAtcmwtY2xhc3MvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACeNzx7Spi61HsnM1eFaa4bjog6FxfKswAAgD8AAIA/ZiYju1artD987wC+dvXcudtzOzuiP+c8AAAAAAAAAABmuls9jPU8PwgScL0hyZm+bmPcPK6O/b0AAAAAAAAAAMDAmD3q+Q+9WqFNOi/k0zvBeK+9kLTmvQAAgD8AAIA/M2OdPE/Yqz/WLb0+HTgpvwwaKbxW59k8AAAAAAAAAABmFJ08XDYUOxAG0D0O9Sm+UIwEPYoYQ78AAAAAAACAP021Pj1h5I09raSbPEHXgL6D83U98dqRvAAAAAAAAAAAAIX7PFq8rT7FTE29gwRCvsK3rbw70gQ9AAAAAAAAAABNKiQ9HEYSvF4f9b1M6gW+ptS9PHs9sj4AAIA/AACAP02Ng72Peia6prGQOXcBMzU75G87OmqouAAAgD8AAIA/mneUPWsLFT+VZOs8VQqavlJuCz3eBxE9AAAAAAAAAAAdhZg+P+43P30/ZL4hrKK+Bfj/PZ6kg74AAAAAAAAAAJqlzT1NxDw+BdoVvh4PdL7sEJu9nauYOgAAAAAAAAAAM/txPEhLk7oZb4uzm8qFrjaYlTrbTbQzAACAPwAAgD/Qk3++vFrkPgYNlj5u65++HUXdvI0nOz4AAAAAAAAAAPNECb6+L4E/DgcSvuKFob4uF/69g93SPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoP8evPa9cUCUhpRSlIwBbJRN0gGMAXSUR0B5q9Gc4HX3dX2UKGgGaAloD0MInyEcsywWc0CUhpRSlGgVTUoBaBZHQHmsPz8P4Eh1fZQoaAZoCWgPQwjbFfpgmc5xQJSGlFKUaBVNSwFoFkdAeazWFev6j3V9lChoBmgJaA9DCCmWW1oNF3FAlIaUUpRoFU1NAmgWR0B5skbZOBUadX2UKGgGaAloD0MI5bZ9j/pSckCUhpRSlGgVTRkBaBZHQHmyai48U211fZQoaAZoCWgPQwhdT3RdOKNwQJSGlFKUaBVNkgJoFkdAedE4zJp35nV9lChoBmgJaA9DCHZPHhYqi3BAlIaUUpRoFU12AmgWR0B50asA/9pAdX2UKGgGaAloD0MI+daH9cbccECUhpRSlGgVTUEBaBZHQHnV8J2MbWF1fZQoaAZoCWgPQwjVsUrp2fRxQJSGlFKUaBVNRAFoFkdAedbZ00WM0nV9lChoBmgJaA9DCFhVL79TQ25AlIaUUpRoFU1UAmgWR0B510PQOWjXdX2UKGgGaAloD0MIlzszwbClcUCUhpRSlGgVTUoBaBZHQHnYfEwWWQh1fZQoaAZoCWgPQwhoImx4+mtwQJSGlFKUaBVNPgFoFkdAedre2/i5u3V9lChoBmgJaA9DCP2gLlKohG9AlIaUUpRoFU1EAmgWR0B52/nTy8SPdX2UKGgGaAloD0MI5GpkV1oNbkCUhpRSlGgVTWABaBZHQHncn4CZF5R1fZQoaAZoCWgPQwgEWrqCbcFuQJSGlFKUaBVNkQFoFkdAeeDpB5X2d3V9lChoBmgJaA9DCABywoRRjXBAlIaUUpRoFU3ZAWgWR0B54a8vmHQAdX2UKGgGaAloD0MIB2LZzGEnckCUhpRSlGgVTUYBaBZHQHnjHp8neBR1fZQoaAZoCWgPQwgIWKt2jVpwQJSGlFKUaBVNGAJoFkdAeeYFI/Z/TnV9lChoBmgJaA9DCKfNOA2RhXFAlIaUUpRoFU1bAWgWR0B56STSsr/bdX2UKGgGaAloD0MI5EnSNRO+ckCUhpRSlGgVTSoBaBZHQHnqTqrzXjF1fZQoaAZoCWgPQwjjp3FvfsdvQJSGlFKUaBVNHAJoFkdAeerrHlwLmnV9lChoBmgJaA9DCAkaM4k6qXBAlIaUUpRoFU0qAWgWR0B56xz4k/r0dX2UKGgGaAloD0MIPu3w1+SwcECUhpRSlGgVTUEBaBZHQHns15fMOgB1fZQoaAZoCWgPQwio4zEDlURvQJSGlFKUaBVN/QFoFkdAee7AhStNjHV9lChoBmgJaA9DCG8NbJWgx3JAlIaUUpRoFU0cAWgWR0B57wOCoS+QdX2UKGgGaAloD0MIk8ZoHdW7cECUhpRSlGgVTUgBaBZHQHnwEWykbgl1fZQoaAZoCWgPQwi5401+i+5xQJSGlFKUaBVNcwFoFkdAefCoGY8dP3V9lChoBmgJaA9DCPSI0XMLI0hAlIaUUpRoFUv6aBZHQHnxTENvwVl1fZQoaAZoCWgPQwj3P8BatS1jQJSGlFKUaBVN6ANoFkdAefSs8PnSv3V9lChoBmgJaA9DCA+dnnfjo29AlIaUUpRoFU0qAWgWR0B59Qx33YcvdX2UKGgGaAloD0MI/z7jwoFMbkCUhpRSlGgVTTsCaBZHQHn1fikwevJ1fZQoaAZoCWgPQwhcAvBP6SNyQJSGlFKUaBVNogFoFkdAefWZNwiqyXV9lChoBmgJaA9DCGiwqfMoT21AlIaUUpRoFU1iAWgWR0B59gzYVZcLdX2UKGgGaAloD0MIbarukc2obUCUhpRSlGgVTSIBaBZHQHn5rq6e5Fx1fZQoaAZoCWgPQwjl1TkGJFhxQJSGlFKUaBVNQAFoFkdAefpkBS1ma3V9lChoBmgJaA9DCPinVIly8nBAlIaUUpRoFU1LAWgWR0B5/F40Mw10dX2UKGgGaAloD0MIECVa8rjvcECUhpRSlGgVTQgBaBZHQHn9i1NQCS11fZQoaAZoCWgPQwhzf/W4b4ttQJSGlFKUaBVNAwFoFkdAef3l18stkHV9lChoBmgJaA9DCOPiqNzEnXFAlIaUUpRoFU06AWgWR0B5/wm9g4OudX2UKGgGaAloD0MI1Ce5w2YcckCUhpRSlGgVTYkBaBZHQHoACzcAR051fZQoaAZoCWgPQwjXT/9Zs4ZxQJSGlFKUaBVNuAFoFkdAegQ6AvtdA3V9lChoBmgJaA9DCHMR34nZznJAlIaUUpRoFU0bAWgWR0B6BRfv4M4MdX2UKGgGaAloD0MIemzLgHN/cECUhpRSlGgVTSwBaBZHQHoFS97F85V1fZQoaAZoCWgPQwhzu5f7JLNyQJSGlFKUaBVNrgFoFkdAegW03fhuO3V9lChoBmgJaA9DCJLmj2mt23FAlIaUUpRoFU01AWgWR0B6Bd/y5I6KdX2UKGgGaAloD0MIn3WNlsNvcECUhpRSlGgVTVQBaBZHQHoGgcPvrnl1fZQoaAZoCWgPQwhYxRuZh/dwQJSGlFKUaBVNXgFoFkdAegdQqI7/43V9lChoBmgJaA9DCCNOJ9kqK3FAlIaUUpRoFU13AmgWR0B6CIhStNi6dX2UKGgGaAloD0MIjj9R2fDpckCUhpRSlGgVTREBaBZHQHoI6Ln9vTB1fZQoaAZoCWgPQwj/z2G+/LNxQJSGlFKUaBVNYgFoFkdAeiZmYBvJinV9lChoBmgJaA9DCBgGLLkKY3BAlIaUUpRoFU0cAWgWR0B6JmmpEQXidX2UKGgGaAloD0MIeEKvP0mUcECUhpRSlGgVTUkCaBZHQHoppnQID5l1fZQoaAZoCWgPQwjlQXqKXDdzQJSGlFKUaBVNSAFoFkdAeio3i704BHV9lChoBmgJaA9DCIMWEjD68nBAlIaUUpRoFU2BAWgWR0B6Ks5zYEntdX2UKGgGaAloD0MIk4/dBYqdcECUhpRSlGgVTVQBaBZHQHor2BJ7LMd1fZQoaAZoCWgPQwjAdcWMcA1vQJSGlFKUaBVNDwFoFkdAei2tITXarXV9lChoBmgJaA9DCD6zJECNq3FAlIaUUpRoFU0sAWgWR0B6Lc7KaG5+dX2UKGgGaAloD0MIzcr2Ie9wcUCUhpRSlGgVTbsBaBZHQHovY0ygwoN1fZQoaAZoCWgPQwitM74vbjdwQJSGlFKUaBVNPQFoFkdAei+TVUdaMnV9lChoBmgJaA9DCPUR+MMPZHBAlIaUUpRoFU0VAWgWR0B6L8miQDFIdX2UKGgGaAloD0MIy2Q4ns8tUECUhpRSlGgVS8hoFkdAejD8xbjcVXV9lChoBmgJaA9DCEn2CDXDhXBAlIaUUpRoFU1iAWgWR0B6MW7nPmgbdX2UKGgGaAloD0MIyo0ia41ebUCUhpRSlGgVTTcBaBZHQHoyndsSCe51fZQoaAZoCWgPQwjKoxth0XhvQJSGlFKUaBVNdAFoFkdAejNQrtmcv3V9lChoBmgJaA9DCNNQo5Ckm3FAlIaUUpRoFU1GAWgWR0B6M6A8SwnqdX2UKGgGaAloD0MITwZHyasxckCUhpRSlGgVTSMBaBZHQHo0+7g88tB1fZQoaAZoCWgPQwiF0hdCTqxxQJSGlFKUaBVNIwFoFkdAejf05lvqDHV9lChoBmgJaA9DCK2iPzTzaW1AlIaUUpRoFU0wAWgWR0B6OTbmEGqxdX2UKGgGaAloD0MIVtP1RJcVcUCUhpRSlGgVTRMBaBZHQHo5Qy/KyOd1fZQoaAZoCWgPQwhO8bioFj5yQJSGlFKUaBVNOgFoFkdAejowc5sCT3V9lChoBmgJaA9DCE94CU49P3FAlIaUUpRoFU0nAWgWR0B6O/aqS5iFdX2UKGgGaAloD0MI9+l4zED8cECUhpRSlGgVTSABaBZHQHo9R7zCk451fZQoaAZoCWgPQwh81F+vsCZMQJSGlFKUaBVL0GgWR0B6PWfAbhm5dX2UKGgGaAloD0MIlPYGX9hOckCUhpRSlGgVTSgBaBZHQHo9h24d6s11fZQoaAZoCWgPQwj+fcaFg8lyQJSGlFKUaBVNLQFoFkdAej4c6NlyzXV9lChoBmgJaA9DCLIubqOBc25AlIaUUpRoFU1aAWgWR0B6Pl+mWMS9dX2UKGgGaAloD0MICXB6F287ckCUhpRSlGgVTRwBaBZHQHo+6/h2nsN1fZQoaAZoCWgPQwiOc5twL9lsQJSGlFKUaBVNAAFoFkdAej/JEYwZfnV9lChoBmgJaA9DCHnKarre/XBAlIaUUpRoFU1aAWgWR0B6QQI8hcJMdX2UKGgGaAloD0MIUYaqmAq+ckCUhpRSlGgVTTwBaBZHQHpBMRxtHhF1fZQoaAZoCWgPQwjsUE1J1idSQJSGlFKUaBVLzWgWR0B6Qjt9hJAddX2UKGgGaAloD0MI9GxWfa5WckCUhpRSlGgVTWABaBZHQHpE4fnwG4Z1fZQoaAZoCWgPQwiG5jqNtBpxQJSGlFKUaBVNCwFoFkdAekXOqebut3V9lChoBmgJaA9DCPc6qS9LzHJAlIaUUpRoFU1QAWgWR0B6SF0p3HJcdX2UKGgGaAloD0MIETY8vZJxcUCUhpRSlGgVTQcBaBZHQHpJFyq+8Gt1fZQoaAZoCWgPQwhpxqLp7FZvQJSGlFKUaBVNCQFoFkdAekkWqtHQQnV9lChoBmgJaA9DCGcsms5OgjBAlIaUUpRoFUvWaBZHQHpJS2H+Idl1fZQoaAZoCWgPQwjkEkceSJNxQJSGlFKUaBVNSAFoFkdAekrQfp2U0XV9lChoBmgJaA9DCIc1lUVhyHJAlIaUUpRoFU0jAWgWR0B6SxhNM496dX2UKGgGaAloD0MIlIlbBbHQckCUhpRSlGgVTUgBaBZHQHpME70WdmR1fZQoaAZoCWgPQwiCcXDpmNBxQJSGlFKUaBVL+WgWR0B6TNFx4ptrdX2UKGgGaAloD0MIhzWVRSHPcUCUhpRSlGgVS/poFkdAek5Lidat93V9lChoBmgJaA9DCAA49uw59nFAlIaUUpRoFU1TAWgWR0B6Tm2JBPbgdX2UKGgGaAloD0MI/mSMD7OWZECUhpRSlGgVTegDaBZHQHpQHnZCfHx1fZQoaAZoCWgPQwhZxLDDWMtxQJSGlFKUaBVNlAFoFkdAelD5gw482nV9lChoBmgJaA9DCCP3dHWHB3FAlIaUUpRoFU1hAWgWR0B6UamCROk+dX2UKGgGaAloD0MImuyfp0H2cUCUhpRSlGgVTSQCaBZHQHpRtA9mpVF1fZQoaAZoCWgPQwgoC19faxtxQJSGlFKUaBVNKwFoFkdAelNbaAWi13V9lChoBmgJaA9DCMXJ/Q5Fcm5AlIaUUpRoFU0GAWgWR0B6VYkTpPhydX2UKGgGaAloD0MIZhL1gk+8b0CUhpRSlGgVTUgBaBZHQHpVuCCjDbd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL2JpbGwvZGV2L2RlZXAtcmwtY2xhc3MvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL2JpbGwvZGV2L2RlZXAtcmwtY2xhc3MvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-52-generic-x86_64-with-glibc2.35 #58-Ubuntu SMP Thu Oct 13 08:03:55 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d25ac298e54fdd935821498fbc7e6bd534effe9918b6f9b0a0ab1ffa131d9617
|
3 |
+
size 147359
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f99312bf0a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f99312bf130>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f99312bf1c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f99312bf250>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f99312bf2e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f99312bf370>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f99312bf400>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f99312bf490>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f99312bf520>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f99312bf5b0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f99312bf640>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f99312c4380>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1672878389287229573,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL2JpbGwvZGV2L2RlZXAtcmwtY2xhc3MvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL2JpbGwvZGV2L2RlZXAtcmwtY2xhc3MvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACeNzx7Spi61HsnM1eFaa4bjog6FxfKswAAgD8AAIA/ZiYju1artD987wC+dvXcudtzOzuiP+c8AAAAAAAAAABmuls9jPU8PwgScL0hyZm+bmPcPK6O/b0AAAAAAAAAAMDAmD3q+Q+9WqFNOi/k0zvBeK+9kLTmvQAAgD8AAIA/M2OdPE/Yqz/WLb0+HTgpvwwaKbxW59k8AAAAAAAAAABmFJ08XDYUOxAG0D0O9Sm+UIwEPYoYQ78AAAAAAACAP021Pj1h5I09raSbPEHXgL6D83U98dqRvAAAAAAAAAAAAIX7PFq8rT7FTE29gwRCvsK3rbw70gQ9AAAAAAAAAABNKiQ9HEYSvF4f9b1M6gW+ptS9PHs9sj4AAIA/AACAP02Ng72Peia6prGQOXcBMzU75G87OmqouAAAgD8AAIA/mneUPWsLFT+VZOs8VQqavlJuCz3eBxE9AAAAAAAAAAAdhZg+P+43P30/ZL4hrKK+Bfj/PZ6kg74AAAAAAAAAAJqlzT1NxDw+BdoVvh4PdL7sEJu9nauYOgAAAAAAAAAAM/txPEhLk7oZb4uzm8qFrjaYlTrbTbQzAACAPwAAgD/Qk3++vFrkPgYNlj5u65++HUXdvI0nOz4AAAAAAAAAAPNECb6+L4E/DgcSvuKFob4uF/69g93SPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoP8evPa9cUCUhpRSlIwBbJRN0gGMAXSUR0B5q9Gc4HX3dX2UKGgGaAloD0MInyEcsywWc0CUhpRSlGgVTUoBaBZHQHmsPz8P4Eh1fZQoaAZoCWgPQwjbFfpgmc5xQJSGlFKUaBVNSwFoFkdAeazWFev6j3V9lChoBmgJaA9DCCmWW1oNF3FAlIaUUpRoFU1NAmgWR0B5skbZOBUadX2UKGgGaAloD0MI5bZ9j/pSckCUhpRSlGgVTRkBaBZHQHmyai48U211fZQoaAZoCWgPQwhdT3RdOKNwQJSGlFKUaBVNkgJoFkdAedE4zJp35nV9lChoBmgJaA9DCHZPHhYqi3BAlIaUUpRoFU12AmgWR0B50asA/9pAdX2UKGgGaAloD0MI+daH9cbccECUhpRSlGgVTUEBaBZHQHnV8J2MbWF1fZQoaAZoCWgPQwjVsUrp2fRxQJSGlFKUaBVNRAFoFkdAedbZ00WM0nV9lChoBmgJaA9DCFhVL79TQ25AlIaUUpRoFU1UAmgWR0B510PQOWjXdX2UKGgGaAloD0MIlzszwbClcUCUhpRSlGgVTUoBaBZHQHnYfEwWWQh1fZQoaAZoCWgPQwhoImx4+mtwQJSGlFKUaBVNPgFoFkdAedre2/i5u3V9lChoBmgJaA9DCP2gLlKohG9AlIaUUpRoFU1EAmgWR0B52/nTy8SPdX2UKGgGaAloD0MI5GpkV1oNbkCUhpRSlGgVTWABaBZHQHncn4CZF5R1fZQoaAZoCWgPQwgEWrqCbcFuQJSGlFKUaBVNkQFoFkdAeeDpB5X2d3V9lChoBmgJaA9DCABywoRRjXBAlIaUUpRoFU3ZAWgWR0B54a8vmHQAdX2UKGgGaAloD0MIB2LZzGEnckCUhpRSlGgVTUYBaBZHQHnjHp8neBR1fZQoaAZoCWgPQwgIWKt2jVpwQJSGlFKUaBVNGAJoFkdAeeYFI/Z/TnV9lChoBmgJaA9DCKfNOA2RhXFAlIaUUpRoFU1bAWgWR0B56STSsr/bdX2UKGgGaAloD0MI5EnSNRO+ckCUhpRSlGgVTSoBaBZHQHnqTqrzXjF1fZQoaAZoCWgPQwjjp3FvfsdvQJSGlFKUaBVNHAJoFkdAeerrHlwLmnV9lChoBmgJaA9DCAkaM4k6qXBAlIaUUpRoFU0qAWgWR0B56xz4k/r0dX2UKGgGaAloD0MIPu3w1+SwcECUhpRSlGgVTUEBaBZHQHns15fMOgB1fZQoaAZoCWgPQwio4zEDlURvQJSGlFKUaBVN/QFoFkdAee7AhStNjHV9lChoBmgJaA9DCG8NbJWgx3JAlIaUUpRoFU0cAWgWR0B57wOCoS+QdX2UKGgGaAloD0MIk8ZoHdW7cECUhpRSlGgVTUgBaBZHQHnwEWykbgl1fZQoaAZoCWgPQwi5401+i+5xQJSGlFKUaBVNcwFoFkdAefCoGY8dP3V9lChoBmgJaA9DCPSI0XMLI0hAlIaUUpRoFUv6aBZHQHnxTENvwVl1fZQoaAZoCWgPQwj3P8BatS1jQJSGlFKUaBVN6ANoFkdAefSs8PnSv3V9lChoBmgJaA9DCA+dnnfjo29AlIaUUpRoFU0qAWgWR0B59Qx33YcvdX2UKGgGaAloD0MI/z7jwoFMbkCUhpRSlGgVTTsCaBZHQHn1fikwevJ1fZQoaAZoCWgPQwhcAvBP6SNyQJSGlFKUaBVNogFoFkdAefWZNwiqyXV9lChoBmgJaA9DCGiwqfMoT21AlIaUUpRoFU1iAWgWR0B59gzYVZcLdX2UKGgGaAloD0MIbarukc2obUCUhpRSlGgVTSIBaBZHQHn5rq6e5Fx1fZQoaAZoCWgPQwjl1TkGJFhxQJSGlFKUaBVNQAFoFkdAefpkBS1ma3V9lChoBmgJaA9DCPinVIly8nBAlIaUUpRoFU1LAWgWR0B5/F40Mw10dX2UKGgGaAloD0MIECVa8rjvcECUhpRSlGgVTQgBaBZHQHn9i1NQCS11fZQoaAZoCWgPQwhzf/W4b4ttQJSGlFKUaBVNAwFoFkdAef3l18stkHV9lChoBmgJaA9DCOPiqNzEnXFAlIaUUpRoFU06AWgWR0B5/wm9g4OudX2UKGgGaAloD0MI1Ce5w2YcckCUhpRSlGgVTYkBaBZHQHoACzcAR051fZQoaAZoCWgPQwjXT/9Zs4ZxQJSGlFKUaBVNuAFoFkdAegQ6AvtdA3V9lChoBmgJaA9DCHMR34nZznJAlIaUUpRoFU0bAWgWR0B6BRfv4M4MdX2UKGgGaAloD0MIemzLgHN/cECUhpRSlGgVTSwBaBZHQHoFS97F85V1fZQoaAZoCWgPQwhzu5f7JLNyQJSGlFKUaBVNrgFoFkdAegW03fhuO3V9lChoBmgJaA9DCJLmj2mt23FAlIaUUpRoFU01AWgWR0B6Bd/y5I6KdX2UKGgGaAloD0MIn3WNlsNvcECUhpRSlGgVTVQBaBZHQHoGgcPvrnl1fZQoaAZoCWgPQwhYxRuZh/dwQJSGlFKUaBVNXgFoFkdAegdQqI7/43V9lChoBmgJaA9DCCNOJ9kqK3FAlIaUUpRoFU13AmgWR0B6CIhStNi6dX2UKGgGaAloD0MIjj9R2fDpckCUhpRSlGgVTREBaBZHQHoI6Ln9vTB1fZQoaAZoCWgPQwj/z2G+/LNxQJSGlFKUaBVNYgFoFkdAeiZmYBvJinV9lChoBmgJaA9DCBgGLLkKY3BAlIaUUpRoFU0cAWgWR0B6JmmpEQXidX2UKGgGaAloD0MIeEKvP0mUcECUhpRSlGgVTUkCaBZHQHoppnQID5l1fZQoaAZoCWgPQwjlQXqKXDdzQJSGlFKUaBVNSAFoFkdAeio3i704BHV9lChoBmgJaA9DCIMWEjD68nBAlIaUUpRoFU2BAWgWR0B6Ks5zYEntdX2UKGgGaAloD0MIk4/dBYqdcECUhpRSlGgVTVQBaBZHQHor2BJ7LMd1fZQoaAZoCWgPQwjAdcWMcA1vQJSGlFKUaBVNDwFoFkdAei2tITXarXV9lChoBmgJaA9DCD6zJECNq3FAlIaUUpRoFU0sAWgWR0B6Lc7KaG5+dX2UKGgGaAloD0MIzcr2Ie9wcUCUhpRSlGgVTbsBaBZHQHovY0ygwoN1fZQoaAZoCWgPQwitM74vbjdwQJSGlFKUaBVNPQFoFkdAei+TVUdaMnV9lChoBmgJaA9DCPUR+MMPZHBAlIaUUpRoFU0VAWgWR0B6L8miQDFIdX2UKGgGaAloD0MIy2Q4ns8tUECUhpRSlGgVS8hoFkdAejD8xbjcVXV9lChoBmgJaA9DCEn2CDXDhXBAlIaUUpRoFU1iAWgWR0B6MW7nPmgbdX2UKGgGaAloD0MIyo0ia41ebUCUhpRSlGgVTTcBaBZHQHoyndsSCe51fZQoaAZoCWgPQwjKoxth0XhvQJSGlFKUaBVNdAFoFkdAejNQrtmcv3V9lChoBmgJaA9DCNNQo5Ckm3FAlIaUUpRoFU1GAWgWR0B6M6A8SwnqdX2UKGgGaAloD0MITwZHyasxckCUhpRSlGgVTSMBaBZHQHo0+7g88tB1fZQoaAZoCWgPQwiF0hdCTqxxQJSGlFKUaBVNIwFoFkdAejf05lvqDHV9lChoBmgJaA9DCK2iPzTzaW1AlIaUUpRoFU0wAWgWR0B6OTbmEGqxdX2UKGgGaAloD0MIVtP1RJcVcUCUhpRSlGgVTRMBaBZHQHo5Qy/KyOd1fZQoaAZoCWgPQwhO8bioFj5yQJSGlFKUaBVNOgFoFkdAejowc5sCT3V9lChoBmgJaA9DCE94CU49P3FAlIaUUpRoFU0nAWgWR0B6O/aqS5iFdX2UKGgGaAloD0MI9+l4zED8cECUhpRSlGgVTSABaBZHQHo9R7zCk451fZQoaAZoCWgPQwh81F+vsCZMQJSGlFKUaBVL0GgWR0B6PWfAbhm5dX2UKGgGaAloD0MIlPYGX9hOckCUhpRSlGgVTSgBaBZHQHo9h24d6s11fZQoaAZoCWgPQwj+fcaFg8lyQJSGlFKUaBVNLQFoFkdAej4c6NlyzXV9lChoBmgJaA9DCLIubqOBc25AlIaUUpRoFU1aAWgWR0B6Pl+mWMS9dX2UKGgGaAloD0MICXB6F287ckCUhpRSlGgVTRwBaBZHQHo+6/h2nsN1fZQoaAZoCWgPQwiOc5twL9lsQJSGlFKUaBVNAAFoFkdAej/JEYwZfnV9lChoBmgJaA9DCHnKarre/XBAlIaUUpRoFU1aAWgWR0B6QQI8hcJMdX2UKGgGaAloD0MIUYaqmAq+ckCUhpRSlGgVTTwBaBZHQHpBMRxtHhF1fZQoaAZoCWgPQwjsUE1J1idSQJSGlFKUaBVLzWgWR0B6Qjt9hJAddX2UKGgGaAloD0MI9GxWfa5WckCUhpRSlGgVTWABaBZHQHpE4fnwG4Z1fZQoaAZoCWgPQwiG5jqNtBpxQJSGlFKUaBVNCwFoFkdAekXOqebut3V9lChoBmgJaA9DCPc6qS9LzHJAlIaUUpRoFU1QAWgWR0B6SF0p3HJcdX2UKGgGaAloD0MIETY8vZJxcUCUhpRSlGgVTQcBaBZHQHpJFyq+8Gt1fZQoaAZoCWgPQwhpxqLp7FZvQJSGlFKUaBVNCQFoFkdAekkWqtHQQnV9lChoBmgJaA9DCGcsms5OgjBAlIaUUpRoFUvWaBZHQHpJS2H+Idl1fZQoaAZoCWgPQwjkEkceSJNxQJSGlFKUaBVNSAFoFkdAekrQfp2U0XV9lChoBmgJaA9DCIc1lUVhyHJAlIaUUpRoFU0jAWgWR0B6SxhNM496dX2UKGgGaAloD0MIlIlbBbHQckCUhpRSlGgVTUgBaBZHQHpME70WdmR1fZQoaAZoCWgPQwiCcXDpmNBxQJSGlFKUaBVL+WgWR0B6TNFx4ptrdX2UKGgGaAloD0MIhzWVRSHPcUCUhpRSlGgVS/poFkdAek5Lidat93V9lChoBmgJaA9DCAA49uw59nFAlIaUUpRoFU1TAWgWR0B6Tm2JBPbgdX2UKGgGaAloD0MI/mSMD7OWZECUhpRSlGgVTegDaBZHQHpQHnZCfHx1fZQoaAZoCWgPQwhZxLDDWMtxQJSGlFKUaBVNlAFoFkdAelD5gw482nV9lChoBmgJaA9DCCP3dHWHB3FAlIaUUpRoFU1hAWgWR0B6UamCROk+dX2UKGgGaAloD0MImuyfp0H2cUCUhpRSlGgVTSQCaBZHQHpRtA9mpVF1fZQoaAZoCWgPQwgoC19faxtxQJSGlFKUaBVNKwFoFkdAelNbaAWi13V9lChoBmgJaA9DCMXJ/Q5Fcm5AlIaUUpRoFU0GAWgWR0B6VYkTpPhydX2UKGgGaAloD0MIZhL1gk+8b0CUhpRSlGgVTUgBaBZHQHpVuCCjDbd1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL2JpbGwvZGV2L2RlZXAtcmwtY2xhc3MvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL2JpbGwvZGV2L2RlZXAtcmwtY2xhc3MvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9cd028bc49ae054c48388c06ef33ae33cb5fa0b459e2dbc96020874da719760
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e52797f1b953cbc8ff5682ec222c7f5aae677f60c6f1da9de8f7c6f37b62c5c8
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.15.0-52-generic-x86_64-with-glibc2.35 #58-Ubuntu SMP Thu Oct 13 08:03:55 UTC 2022
|
2 |
+
Python: 3.10.6
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.1+cu117
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.24.1
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (186 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.7460642732534, "std_reward": 22.81631458548653, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-04T19:36:54.307444"}
|