billa1972 commited on
Commit
38e1192
1 Parent(s): 638bd00

Model save

Browse files
Files changed (2) hide show
  1. README.md +99 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - violations_dataset
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: layoutlmv3-violations-test
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: violations_dataset
21
+ type: violations_dataset
22
+ config: ViolationsExtraction
23
+ split: test
24
+ args: ViolationsExtraction
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9482758620689655
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9116022099447514
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9295774647887324
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9502762430939227
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # layoutlmv3-violations-test
44
+
45
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the violations_dataset dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.3979
48
+ - Precision: 0.9483
49
+ - Recall: 0.9116
50
+ - F1: 0.9296
51
+ - Accuracy: 0.9503
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 1e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - training_steps: 1000
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 9.0909 | 100 | 0.2997 | 0.9543 | 0.9227 | 0.9382 | 0.9558 |
83
+ | No log | 18.1818 | 200 | 0.3729 | 0.9425 | 0.9061 | 0.9239 | 0.9448 |
84
+ | No log | 27.2727 | 300 | 0.3408 | 0.9543 | 0.9227 | 0.9382 | 0.9558 |
85
+ | No log | 36.3636 | 400 | 0.3566 | 0.9483 | 0.9116 | 0.9296 | 0.9503 |
86
+ | 0.0997 | 45.4545 | 500 | 0.3685 | 0.9483 | 0.9116 | 0.9296 | 0.9503 |
87
+ | 0.0997 | 54.5455 | 600 | 0.3736 | 0.9483 | 0.9116 | 0.9296 | 0.9503 |
88
+ | 0.0997 | 63.6364 | 700 | 0.3866 | 0.9483 | 0.9116 | 0.9296 | 0.9503 |
89
+ | 0.0997 | 72.7273 | 800 | 0.3990 | 0.9483 | 0.9116 | 0.9296 | 0.9503 |
90
+ | 0.0997 | 81.8182 | 900 | 0.4018 | 0.9483 | 0.9116 | 0.9296 | 0.9503 |
91
+ | 0.001 | 90.9091 | 1000 | 0.3979 | 0.9483 | 0.9116 | 0.9296 | 0.9503 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.42.1
97
+ - Pytorch 2.3.1+cu118
98
+ - Datasets 2.20.0
99
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d08b892c5a8afacf14ca4ed759d692f3f2f014369e0fd1b63716266a2a528188
3
  size 501361684
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f57f83c83ab7b43b6f79438e14dcee10360b3c13566e0a3c7f528e2d5cc58ff
3
  size 501361684