Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torchaudio
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load your trained model (replace with your model loading logic)
|
6 |
+
# model = ... (load your model here)
|
7 |
+
|
8 |
+
def transcribe(audio):
|
9 |
+
# Load the audio file
|
10 |
+
waveform, sample_rate = torchaudio.load(audio)
|
11 |
+
|
12 |
+
# Preprocess the audio (if necessary)
|
13 |
+
# Here, we assume that the model expects a specific input format
|
14 |
+
# For example, convert to mono if it's stereo
|
15 |
+
if waveform.shape[0] > 1: # If stereo, take the first channel
|
16 |
+
waveform = waveform[0, :].unsqueeze(0)
|
17 |
+
|
18 |
+
# Normalize the waveform (if necessary)
|
19 |
+
waveform = waveform / waveform.abs().max()
|
20 |
+
|
21 |
+
# Predict text from audio
|
22 |
+
# Make sure to set the model to evaluation mode
|
23 |
+
# model.eval()
|
24 |
+
with torch.no_grad():
|
25 |
+
# Replace this with your model's prediction logic
|
26 |
+
# predicted_text = model(waveform)
|
27 |
+
|
28 |
+
# Dummy output for illustration
|
29 |
+
predicted_text = "This is a placeholder for the transcribed text."
|
30 |
+
|
31 |
+
return predicted_text
|
32 |
+
|
33 |
+
# Create Gradio interface
|
34 |
+
interface = gr.Interface(
|
35 |
+
fn=transcribe,
|
36 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
37 |
+
outputs="text",
|
38 |
+
title="Speech-to-Text Transcription",
|
39 |
+
description="Upload an audio file to transcribe it into text."
|
40 |
+
)
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
interface.launch()
|