Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
3 |
+
|
4 |
+
|
5 |
+
# 转换 onnx 模型
|
6 |
+
def convert(path, onnx_path, onnx_path):
|
7 |
+
onnx_model = ORTModelForSequenceClassification.from_pretrained(path, from_transformers=True)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
9 |
+
|
10 |
+
onnx_model.save_pretrained(onnx_path)
|
11 |
+
tokenizer.save_pretrained(onnx_path)
|
12 |
+
|
13 |
+
|
14 |
+
# 加载模型,用pipeline包装
|
15 |
+
def load_model(model_name):
|
16 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
+
text_classification_pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
19 |
+
print(text_classification_pipeline('这是一个简单的demo,用来防止忘记'))
|
20 |
+
return text_classification_pipeline
|
21 |
+
|
22 |
+
|
23 |
+
# 加载 onnx 模型,用pipeline包装
|
24 |
+
def load_onnx_model(onnx_path):
|
25 |
+
lang_tokenizer = AutoTokenizer.from_pretrained(onnx_path)
|
26 |
+
lang_model = ORTModelForSequenceClassification.from_pretrained(onnx_path)
|
27 |
+
lang_detecter = pipeline("text-classification", model=lang_model, tokenizer=lang_tokenizer, truncation=True)
|
28 |
+
print(lang_detecter('这是一个简单的demo,用来防止忘记'))
|
29 |
+
return lang_detecter
|