Commit
·
598fe3e
1
Parent(s):
143b0cf
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- loc_beyond_words
|
7 |
+
model-index:
|
8 |
+
- name: detr-resnet-50_fine_tuned_loc-2023
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# detr-resnet-50_fine_tuned_loc-2023
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the loc_beyond_words dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.8784
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0001
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 100
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
50 |
+
| 3.731 | 0.16 | 50 | 2.6356 |
|
51 |
+
| 2.4875 | 0.31 | 100 | 2.2348 |
|
52 |
+
| 2.1786 | 0.47 | 150 | 2.1148 |
|
53 |
+
| 1.9845 | 0.62 | 200 | 1.8847 |
|
54 |
+
| 1.8507 | 0.78 | 250 | 1.8331 |
|
55 |
+
| 1.6813 | 0.94 | 300 | 1.5620 |
|
56 |
+
| 1.5613 | 1.09 | 350 | 1.5898 |
|
57 |
+
| 1.4966 | 1.25 | 400 | 1.4161 |
|
58 |
+
| 1.4831 | 1.41 | 450 | 1.4831 |
|
59 |
+
| 1.4587 | 1.56 | 500 | 1.3218 |
|
60 |
+
| 1.433 | 1.72 | 550 | 1.3529 |
|
61 |
+
| 1.33 | 1.88 | 600 | 1.2453 |
|
62 |
+
| 1.2842 | 2.03 | 650 | 1.2956 |
|
63 |
+
| 1.2807 | 2.19 | 700 | 1.1993 |
|
64 |
+
| 1.1767 | 2.34 | 750 | 1.1557 |
|
65 |
+
| 1.2134 | 2.5 | 800 | 1.1393 |
|
66 |
+
| 1.1897 | 2.66 | 850 | 1.2016 |
|
67 |
+
| 1.1784 | 2.81 | 900 | 1.1235 |
|
68 |
+
| 1.2016 | 2.97 | 950 | 1.1378 |
|
69 |
+
| 1.06 | 3.12 | 1000 | 1.0803 |
|
70 |
+
| 1.1124 | 3.28 | 1050 | 1.1145 |
|
71 |
+
| 1.1191 | 3.44 | 1100 | 1.0523 |
|
72 |
+
| 1.0819 | 3.59 | 1150 | 1.0165 |
|
73 |
+
| 1.1196 | 3.75 | 1200 | 1.0349 |
|
74 |
+
| 1.0534 | 3.91 | 1250 | 1.0441 |
|
75 |
+
| 1.0365 | 4.06 | 1300 | 1.1177 |
|
76 |
+
| 0.9853 | 4.22 | 1350 | 1.0721 |
|
77 |
+
| 0.9984 | 4.38 | 1400 | 0.9923 |
|
78 |
+
| 0.9802 | 4.53 | 1450 | 1.0079 |
|
79 |
+
| 1.04 | 4.69 | 1500 | 1.0198 |
|
80 |
+
| 1.098 | 4.84 | 1550 | 0.9788 |
|
81 |
+
| 1.079 | 5.0 | 1600 | 1.0291 |
|
82 |
+
| 1.0664 | 5.16 | 1650 | 0.9691 |
|
83 |
+
| 0.9715 | 5.31 | 1700 | 0.9380 |
|
84 |
+
| 0.9723 | 5.47 | 1750 | 1.0164 |
|
85 |
+
| 1.0019 | 5.62 | 1800 | 1.0064 |
|
86 |
+
| 0.9895 | 5.78 | 1850 | 1.0364 |
|
87 |
+
| 0.9835 | 5.94 | 1900 | 0.9848 |
|
88 |
+
| 0.994 | 6.09 | 1950 | 0.9353 |
|
89 |
+
| 0.9693 | 6.25 | 2000 | 0.9425 |
|
90 |
+
| 0.9413 | 6.41 | 2050 | 0.9173 |
|
91 |
+
| 0.9375 | 6.56 | 2100 | 0.9663 |
|
92 |
+
| 0.952 | 6.72 | 2150 | 0.8951 |
|
93 |
+
| 0.8927 | 6.88 | 2200 | 0.9099 |
|
94 |
+
| 0.8777 | 7.03 | 2250 | 0.9238 |
|
95 |
+
| 0.8976 | 7.19 | 2300 | 0.9715 |
|
96 |
+
| 0.9451 | 7.34 | 2350 | 0.9373 |
|
97 |
+
| 0.8972 | 7.5 | 2400 | 0.8959 |
|
98 |
+
| 0.9393 | 7.66 | 2450 | 1.0062 |
|
99 |
+
| 0.9 | 7.81 | 2500 | 0.8920 |
|
100 |
+
| 0.915 | 7.97 | 2550 | 0.8833 |
|
101 |
+
| 0.9018 | 8.12 | 2600 | 0.8671 |
|
102 |
+
| 0.8272 | 8.28 | 2650 | 0.9304 |
|
103 |
+
| 0.943 | 8.44 | 2700 | 0.8593 |
|
104 |
+
| 0.8667 | 8.59 | 2750 | 0.8875 |
|
105 |
+
| 0.871 | 8.75 | 2800 | 0.8457 |
|
106 |
+
| 0.9023 | 8.91 | 2850 | 0.8448 |
|
107 |
+
| 0.8733 | 9.06 | 2900 | 0.8261 |
|
108 |
+
| 0.8686 | 9.22 | 2950 | 0.8489 |
|
109 |
+
| 0.8412 | 9.38 | 3000 | 0.8244 |
|
110 |
+
| 0.8385 | 9.53 | 3050 | 0.8830 |
|
111 |
+
| 0.891 | 9.69 | 3100 | 0.8349 |
|
112 |
+
| 0.8692 | 9.84 | 3150 | 0.8672 |
|
113 |
+
| 0.8247 | 10.0 | 3200 | 0.8811 |
|
114 |
+
| 0.799 | 10.16 | 3250 | 0.8784 |
|
115 |
+
|
116 |
+
|
117 |
+
### Framework versions
|
118 |
+
|
119 |
+
- Transformers 4.27.4
|
120 |
+
- Pytorch 2.0.0+cu118
|
121 |
+
- Datasets 2.11.0
|
122 |
+
- Tokenizers 0.13.3
|