PEFT
code
terryyz commited on
Commit
bffe097
1 Parent(s): 848b60d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -14
README.md CHANGED
@@ -1,18 +1,141 @@
1
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
 
3
 
4
- The following `bitsandbytes` quantization config was used during training:
5
- - quant_method: bitsandbytes
6
- - load_in_8bit: True
7
- - load_in_4bit: False
8
- - llm_int8_threshold: 6.0
9
- - llm_int8_skip_modules: None
10
- - llm_int8_enable_fp32_cpu_offload: False
11
- - llm_int8_has_fp16_weight: False
12
- - bnb_4bit_quant_type: fp4
13
- - bnb_4bit_use_double_quant: False
14
- - bnb_4bit_compute_dtype: float32
15
- ### Framework versions
16
 
 
17
 
18
- - PEFT 0.6.0.dev0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bigcode-openrail-m
3
+ datasets:
4
+ - bigcode/guanaco-commits
5
+ metrics:
6
+ - code_eval
7
+ library_name: peft
8
+ tags:
9
+ - code
10
+ ---
11
+ # Astraios: A Recipe for Parameter-Efficient Instruction Tuning Code Language Models
12
+ <p align="center" width="100%">
13
+ <a ><img src="https://github.com/bigcode-project/astraios/blob/main/visuals/banner.png?raw=true" alt="Astraios" style="width: 20%; min-width: 300px; display: block; margin: auto;"></a>
14
+ </p>
15
 
16
+ # Table of Contents
17
 
18
+ 1. [Model Summary](#model-summary)
19
+ 2. [Use](#use)
20
+ 3. [Training](#training)
21
+ 4. [Citation](#citation)
 
 
 
 
 
 
 
 
22
 
23
+ # Model Summary
24
 
25
+ > Astraios-1B-LoRA is an instruction tuned model with 15.5B parameters created by finetuning StarCoderBase on CommitPackFT & OASST as described in the Astraios paper.
26
+
27
+ - **Repository:** [bigcode-project/astraios](https://github.com/bigcode-project/astraios)
28
+ - **Paper:** [Astraios: A Recipe for Parameter Efficient Instruction Tuning Code Language Models]()
29
+ - **Languages:** 80+ Programming languages
30
+ - **✨Astraios:**
31
+ <table>
32
+ <tr>
33
+ <th>Data</t>
34
+ <td><a href=https://huggingface.co/datasets/bigcode/guanaco-commits>CommitPackFT+OASST</a></td>
35
+ <td>Filtered version of CommitPack and OASST for high-quality commit messages that resemble instructions</td>
36
+ </tr>
37
+ <tr>
38
+ <th>Model</t>
39
+ <td><a href=https://huggingface.co/collections/bigcode/astraios-1b-6576ff1b8e449026ae327c1c>Astraios-1B</a></td>
40
+ <td>Collection of StarCoderBase-1B models instruction tuned on CommitPackFT + OASST with different tuning methods</td>
41
+ </tr>
42
+ <tr>
43
+ <th></t>
44
+ <td><a href=https://huggingface.co/collections/bigcode/astraios-3b-6577127317ee44ff547252d3>Astraios-3B</a></td>
45
+ <td>Collection of StarCoderBase-3B (3B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td>
46
+ </tr>
47
+ <tr>
48
+ <th></t>
49
+ <td><a href=https://huggingface.co/collections/starpeft/starcoderbase-7b-650c1f028b45cfec8e72c265>Astraios-7B</a></td>
50
+ <td>Collection of StarCoderBase-7B (7B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td>
51
+ </tr>
52
+ <tr>
53
+ <th></t>
54
+ <td><a href=https://huggingface.co/collections/bigcode/astraios-16b-65788b7476b6de79781054cc>Astraios-16B</a></td>
55
+ <td>Collection of StarCoderBase-16B (16B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td>
56
+ </tr>
57
+ <tr>
58
+ <th>Evaluation</t>
59
+ <td><a href=https://huggingface.co/datasets/code_x_glue_cc_clone_detection_big_clone_bench>BigCloneBench</a></td>
60
+ <td>Dataset for clone detection; We use 2,000 samples for evaluation</td>
61
+ </tr>
62
+ <tr>
63
+ <th></t>
64
+ <td><a href=https://huggingface.co/datasets/code_x_glue_cc_defect_detection>Devign</a></td>
65
+ <td>Dataset for defect detection; We use 2,000 samples for evaluation</td>
66
+ </tr>
67
+ <tr>
68
+ <th></t>
69
+ <td><a href=https://huggingface.co/datasets/bigcode/humanevalpack>HumanEvalPack</a></td>
70
+ <td>Extension of OpenAI's HumanEval to cover 3 scenarios across 6 languages</td>
71
+ </tr>
72
+ <tr>
73
+ <th></t>
74
+ <td><a href=https://huggingface.co/datasets/RaymondLi/perturbed_humaneval>ReCode</a></td>
75
+ <td>Dataset for the robustness of code generation, covering 4 variants</td>
76
+ </tr>
77
+ <tr>
78
+ <th></t>
79
+ <td><a href=https://huggingface.co/datasets/moyix/asleep_keyboard>Asleep At The Keyboard</a></td>
80
+ <td>Datasets for security of code generation; We use DoW for evaluation</td>
81
+ </tr>
82
+ </table>
83
+
84
+
85
+ # Use
86
+
87
+ ## Intended use
88
+
89
+ The model follows instructions provided in the input. You should always preface your input with "Question: " and finish it with "Answer:", for example: "Question: Please write a function in Python that performs bubble sort.\n\nAnswer:"
90
+
91
+ **Feel free to share your generations in the Community tab!**
92
+
93
+ ## Generation
94
+ ```python
95
+ # pip install -q transformers
96
+ # pip install -e git+https://github.com/bigcode-project/astraios#subdirectory=peft
97
+ from peft import PeftModel
98
+ from transformers import AutoModelForCausalLM, AutoTokenizer
99
+
100
+ peft_checkpoint = "bigcode/astraios-1b-lora"
101
+ checkpoint = "bigcode/starcoderbase-1b"
102
+ model = PeftModel.from_pretrained(checkpoint, peft_checkpoint)
103
+ try:
104
+ model.merge_and_unload()
105
+ except:
106
+ pass
107
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
108
+
109
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
110
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
111
+
112
+ inputs = tokenizer.encode("Question: Please write a function in Python that performs bubble sort.\n\nAnswer:", return_tensors="pt").to(device)
113
+ outputs = model.generate(inputs)
114
+ print(tokenizer.decode(outputs[0]))
115
+ ```
116
+
117
+ # Training
118
+
119
+ ## Model
120
+
121
+ - **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
122
+ - **Steps:** 250k pretraining & 200 instruction tuning
123
+ - **Precision:** fp32
124
+
125
+ ## Hardware
126
+
127
+ - **Pretraining:**
128
+ - **GPUs:** 512 Tesla A100
129
+ - **Training time:** 24 days
130
+ - **Instruction tuning:**
131
+ - **GPUs:** 8 Tesla A100
132
+
133
+ ## Software
134
+
135
+ - **Orchestration:** [Megatron-LM/Transformers](https://github.com/bigcode-project/octopack#training)
136
+ - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
137
+
138
+ # Citation
139
+
140
+ ```bibtex
141
+ ```