bhuvanmdev
commited on
Update unet/mv_unet.py
Browse files- unet/mv_unet.py +1004 -1004
unet/mv_unet.py
CHANGED
@@ -1,1005 +1,1005 @@
|
|
1 |
-
import math
|
2 |
-
import numpy as np
|
3 |
-
from inspect import isfunction
|
4 |
-
from typing import Optional, Any, List
|
5 |
-
|
6 |
-
import torch
|
7 |
-
import torch.nn as nn
|
8 |
-
import torch.nn.functional as F
|
9 |
-
from einops import rearrange, repeat
|
10 |
-
|
11 |
-
from diffusers.configuration_utils import ConfigMixin
|
12 |
-
from diffusers.models.modeling_utils import ModelMixin
|
13 |
-
|
14 |
-
# require xformers!
|
15 |
-
import xformers
|
16 |
-
import xformers.ops
|
17 |
-
|
18 |
-
from kiui.cam import orbit_camera
|
19 |
-
|
20 |
-
def get_camera(
|
21 |
-
num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True, extra_view=False,
|
22 |
-
):
|
23 |
-
angle_gap = azimuth_span / num_frames
|
24 |
-
cameras = []
|
25 |
-
for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
|
26 |
-
|
27 |
-
pose = orbit_camera(-elevation, azimuth, radius=1) # kiui's elevation is negated, [4, 4]
|
28 |
-
|
29 |
-
# opengl to blender
|
30 |
-
if blender_coord:
|
31 |
-
pose[2] *= -1
|
32 |
-
pose[[1, 2]] = pose[[2, 1]]
|
33 |
-
|
34 |
-
cameras.append(pose.flatten())
|
35 |
-
|
36 |
-
if extra_view:
|
37 |
-
cameras.append(np.zeros_like(cameras[0]))
|
38 |
-
|
39 |
-
return torch.from_numpy(np.stack(cameras, axis=0)).float() # [num_frames, 16]
|
40 |
-
|
41 |
-
|
42 |
-
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
43 |
-
"""
|
44 |
-
Create sinusoidal timestep embeddings.
|
45 |
-
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
46 |
-
These may be fractional.
|
47 |
-
:param dim: the dimension of the output.
|
48 |
-
:param max_period: controls the minimum frequency of the embeddings.
|
49 |
-
:return: an [N x dim] Tensor of positional embeddings.
|
50 |
-
"""
|
51 |
-
if not repeat_only:
|
52 |
-
half = dim // 2
|
53 |
-
freqs = torch.exp(
|
54 |
-
-math.log(max_period)
|
55 |
-
* torch.arange(start=0, end=half, dtype=torch.float32)
|
56 |
-
/ half
|
57 |
-
).to(device=timesteps.device)
|
58 |
-
args = timesteps[:, None] * freqs[None]
|
59 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
60 |
-
if dim % 2:
|
61 |
-
embedding = torch.cat(
|
62 |
-
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
63 |
-
)
|
64 |
-
else:
|
65 |
-
embedding = repeat(timesteps, "b -> b d", d=dim)
|
66 |
-
# import pdb; pdb.set_trace()
|
67 |
-
return embedding
|
68 |
-
|
69 |
-
|
70 |
-
def zero_module(module):
|
71 |
-
"""
|
72 |
-
Zero out the parameters of a module and return it.
|
73 |
-
"""
|
74 |
-
for p in module.parameters():
|
75 |
-
p.detach().zero_()
|
76 |
-
return module
|
77 |
-
|
78 |
-
|
79 |
-
def conv_nd(dims, *args, **kwargs):
|
80 |
-
"""
|
81 |
-
Create a 1D, 2D, or 3D convolution module.
|
82 |
-
"""
|
83 |
-
if dims == 1:
|
84 |
-
return nn.Conv1d(*args, **kwargs)
|
85 |
-
elif dims == 2:
|
86 |
-
return nn.Conv2d(*args, **kwargs)
|
87 |
-
elif dims == 3:
|
88 |
-
return nn.Conv3d(*args, **kwargs)
|
89 |
-
raise ValueError(f"unsupported dimensions: {dims}")
|
90 |
-
|
91 |
-
|
92 |
-
def avg_pool_nd(dims, *args, **kwargs):
|
93 |
-
"""
|
94 |
-
Create a 1D, 2D, or 3D average pooling module.
|
95 |
-
"""
|
96 |
-
if dims == 1:
|
97 |
-
return nn.AvgPool1d(*args, **kwargs)
|
98 |
-
elif dims == 2:
|
99 |
-
return nn.AvgPool2d(*args, **kwargs)
|
100 |
-
elif dims == 3:
|
101 |
-
return nn.AvgPool3d(*args, **kwargs)
|
102 |
-
raise ValueError(f"unsupported dimensions: {dims}")
|
103 |
-
|
104 |
-
|
105 |
-
def default(val, d):
|
106 |
-
if val is not None:
|
107 |
-
return val
|
108 |
-
return d() if isfunction(d) else d
|
109 |
-
|
110 |
-
|
111 |
-
class GEGLU(nn.Module):
|
112 |
-
def __init__(self, dim_in, dim_out):
|
113 |
-
super().__init__()
|
114 |
-
self.proj = nn.Linear(dim_in, dim_out * 2)
|
115 |
-
|
116 |
-
def forward(self, x):
|
117 |
-
x, gate = self.proj(x).chunk(2, dim=-1)
|
118 |
-
return x * F.gelu(gate)
|
119 |
-
|
120 |
-
|
121 |
-
class FeedForward(nn.Module):
|
122 |
-
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
123 |
-
super().__init__()
|
124 |
-
inner_dim = int(dim * mult)
|
125 |
-
dim_out = default(dim_out, dim)
|
126 |
-
project_in = (
|
127 |
-
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
128 |
-
if not glu
|
129 |
-
else GEGLU(dim, inner_dim)
|
130 |
-
)
|
131 |
-
|
132 |
-
self.net = nn.Sequential(
|
133 |
-
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
134 |
-
)
|
135 |
-
|
136 |
-
def forward(self, x):
|
137 |
-
return self.net(x)
|
138 |
-
|
139 |
-
|
140 |
-
class MemoryEfficientCrossAttention(nn.Module):
|
141 |
-
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
142 |
-
def __init__(
|
143 |
-
self,
|
144 |
-
query_dim,
|
145 |
-
context_dim=None,
|
146 |
-
heads=8,
|
147 |
-
dim_head=64,
|
148 |
-
dropout=0.0,
|
149 |
-
ip_dim=0,
|
150 |
-
ip_weight=1,
|
151 |
-
):
|
152 |
-
super().__init__()
|
153 |
-
|
154 |
-
inner_dim = dim_head * heads
|
155 |
-
context_dim = default(context_dim, query_dim)
|
156 |
-
|
157 |
-
self.heads = heads
|
158 |
-
self.dim_head = dim_head
|
159 |
-
|
160 |
-
self.ip_dim = ip_dim
|
161 |
-
self.ip_weight = ip_weight
|
162 |
-
|
163 |
-
if self.ip_dim > 0:
|
164 |
-
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
165 |
-
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
166 |
-
|
167 |
-
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
168 |
-
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
169 |
-
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
170 |
-
|
171 |
-
self.to_out = nn.Sequential(
|
172 |
-
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
173 |
-
)
|
174 |
-
self.attention_op: Optional[Any] = None
|
175 |
-
|
176 |
-
def forward(self, x, context=None):
|
177 |
-
q = self.to_q(x)
|
178 |
-
context = default(context, x)
|
179 |
-
|
180 |
-
if self.ip_dim > 0:
|
181 |
-
# context: [B, 77 + 16(ip), 1024]
|
182 |
-
token_len = context.shape[1]
|
183 |
-
context_ip = context[:, -self.ip_dim :, :]
|
184 |
-
k_ip = self.to_k_ip(context_ip)
|
185 |
-
v_ip = self.to_v_ip(context_ip)
|
186 |
-
context = context[:, : (token_len - self.ip_dim), :]
|
187 |
-
|
188 |
-
k = self.to_k(context)
|
189 |
-
v = self.to_v(context)
|
190 |
-
|
191 |
-
b, _, _ = q.shape
|
192 |
-
q, k, v = map(
|
193 |
-
lambda t: t.unsqueeze(3)
|
194 |
-
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
195 |
-
.permute(0, 2, 1, 3)
|
196 |
-
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
197 |
-
.contiguous(),
|
198 |
-
(q, k, v),
|
199 |
-
)
|
200 |
-
|
201 |
-
# actually compute the attention, what we cannot get enough of
|
202 |
-
out = xformers.ops.memory_efficient_attention(
|
203 |
-
q, k, v, attn_bias=None, op=self.attention_op
|
204 |
-
)
|
205 |
-
|
206 |
-
if self.ip_dim > 0:
|
207 |
-
k_ip, v_ip = map(
|
208 |
-
lambda t: t.unsqueeze(3)
|
209 |
-
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
210 |
-
.permute(0, 2, 1, 3)
|
211 |
-
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
212 |
-
.contiguous(),
|
213 |
-
(k_ip, v_ip),
|
214 |
-
)
|
215 |
-
# actually compute the attention, what we cannot get enough of
|
216 |
-
out_ip = xformers.ops.memory_efficient_attention(
|
217 |
-
q, k_ip, v_ip, attn_bias=None, op=self.attention_op
|
218 |
-
)
|
219 |
-
out = out + self.ip_weight * out_ip
|
220 |
-
|
221 |
-
out = (
|
222 |
-
out.unsqueeze(0)
|
223 |
-
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
224 |
-
.permute(0, 2, 1, 3)
|
225 |
-
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
226 |
-
)
|
227 |
-
return self.to_out(out)
|
228 |
-
|
229 |
-
|
230 |
-
class BasicTransformerBlock3D(nn.Module):
|
231 |
-
|
232 |
-
def __init__(
|
233 |
-
self,
|
234 |
-
dim,
|
235 |
-
n_heads,
|
236 |
-
d_head,
|
237 |
-
context_dim,
|
238 |
-
dropout=0.0,
|
239 |
-
gated_ff=True,
|
240 |
-
ip_dim=0,
|
241 |
-
ip_weight=1,
|
242 |
-
):
|
243 |
-
super().__init__()
|
244 |
-
|
245 |
-
self.attn1 = MemoryEfficientCrossAttention(
|
246 |
-
query_dim=dim,
|
247 |
-
context_dim=None, # self-attention
|
248 |
-
heads=n_heads,
|
249 |
-
dim_head=d_head,
|
250 |
-
dropout=dropout,
|
251 |
-
)
|
252 |
-
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
253 |
-
self.attn2 = MemoryEfficientCrossAttention(
|
254 |
-
query_dim=dim,
|
255 |
-
context_dim=context_dim,
|
256 |
-
heads=n_heads,
|
257 |
-
dim_head=d_head,
|
258 |
-
dropout=dropout,
|
259 |
-
# ip only applies to cross-attention
|
260 |
-
ip_dim=ip_dim,
|
261 |
-
ip_weight=ip_weight,
|
262 |
-
)
|
263 |
-
self.norm1 = nn.LayerNorm(dim)
|
264 |
-
self.norm2 = nn.LayerNorm(dim)
|
265 |
-
self.norm3 = nn.LayerNorm(dim)
|
266 |
-
|
267 |
-
def forward(self, x, context=None, num_frames=1):
|
268 |
-
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
|
269 |
-
x = self.attn1(self.norm1(x), context=None) + x
|
270 |
-
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
|
271 |
-
x = self.attn2(self.norm2(x), context=context) + x
|
272 |
-
x = self.ff(self.norm3(x)) + x
|
273 |
-
return x
|
274 |
-
|
275 |
-
|
276 |
-
class SpatialTransformer3D(nn.Module):
|
277 |
-
|
278 |
-
def __init__(
|
279 |
-
self,
|
280 |
-
in_channels,
|
281 |
-
n_heads,
|
282 |
-
d_head,
|
283 |
-
context_dim, # cross attention input dim
|
284 |
-
depth=1,
|
285 |
-
dropout=0.0,
|
286 |
-
ip_dim=0,
|
287 |
-
ip_weight=1,
|
288 |
-
):
|
289 |
-
super().__init__()
|
290 |
-
|
291 |
-
if not isinstance(context_dim, list):
|
292 |
-
context_dim = [context_dim]
|
293 |
-
|
294 |
-
self.in_channels = in_channels
|
295 |
-
|
296 |
-
inner_dim = n_heads * d_head
|
297 |
-
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
298 |
-
self.proj_in = nn.Linear(in_channels, inner_dim)
|
299 |
-
|
300 |
-
self.transformer_blocks = nn.ModuleList(
|
301 |
-
[
|
302 |
-
BasicTransformerBlock3D(
|
303 |
-
inner_dim,
|
304 |
-
n_heads,
|
305 |
-
d_head,
|
306 |
-
context_dim=context_dim[d],
|
307 |
-
dropout=dropout,
|
308 |
-
ip_dim=ip_dim,
|
309 |
-
ip_weight=ip_weight,
|
310 |
-
)
|
311 |
-
for d in range(depth)
|
312 |
-
]
|
313 |
-
)
|
314 |
-
|
315 |
-
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
316 |
-
|
317 |
-
|
318 |
-
def forward(self, x, context=None, num_frames=1):
|
319 |
-
# note: if no context is given, cross-attention defaults to self-attention
|
320 |
-
if not isinstance(context, list):
|
321 |
-
context = [context]
|
322 |
-
b, c, h, w = x.shape
|
323 |
-
x_in = x
|
324 |
-
x = self.norm(x)
|
325 |
-
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
326 |
-
x = self.proj_in(x)
|
327 |
-
for i, block in enumerate(self.transformer_blocks):
|
328 |
-
x = block(x, context=context[i], num_frames=num_frames)
|
329 |
-
x = self.proj_out(x)
|
330 |
-
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
331 |
-
|
332 |
-
return x + x_in
|
333 |
-
|
334 |
-
|
335 |
-
class PerceiverAttention(nn.Module):
|
336 |
-
def __init__(self, *, dim, dim_head=64, heads=8):
|
337 |
-
super().__init__()
|
338 |
-
self.scale = dim_head ** -0.5
|
339 |
-
self.dim_head = dim_head
|
340 |
-
self.heads = heads
|
341 |
-
inner_dim = dim_head * heads
|
342 |
-
|
343 |
-
self.norm1 = nn.LayerNorm(dim)
|
344 |
-
self.norm2 = nn.LayerNorm(dim)
|
345 |
-
|
346 |
-
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
347 |
-
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
348 |
-
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
349 |
-
|
350 |
-
def forward(self, x, latents):
|
351 |
-
"""
|
352 |
-
Args:
|
353 |
-
x (torch.Tensor): image features
|
354 |
-
shape (b, n1, D)
|
355 |
-
latent (torch.Tensor): latent features
|
356 |
-
shape (b, n2, D)
|
357 |
-
"""
|
358 |
-
x = self.norm1(x)
|
359 |
-
latents = self.norm2(latents)
|
360 |
-
|
361 |
-
b, l, _ = latents.shape
|
362 |
-
|
363 |
-
q = self.to_q(latents)
|
364 |
-
kv_input = torch.cat((x, latents), dim=-2)
|
365 |
-
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
366 |
-
|
367 |
-
q, k, v = map(
|
368 |
-
lambda t: t.reshape(b, t.shape[1], self.heads, -1)
|
369 |
-
.transpose(1, 2)
|
370 |
-
.reshape(b, self.heads, t.shape[1], -1)
|
371 |
-
.contiguous(),
|
372 |
-
(q, k, v),
|
373 |
-
)
|
374 |
-
|
375 |
-
# attention
|
376 |
-
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
377 |
-
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
378 |
-
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
379 |
-
out = weight @ v
|
380 |
-
|
381 |
-
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
382 |
-
|
383 |
-
return self.to_out(out)
|
384 |
-
|
385 |
-
|
386 |
-
class Resampler(nn.Module):
|
387 |
-
def __init__(
|
388 |
-
self,
|
389 |
-
dim=1024,
|
390 |
-
depth=8,
|
391 |
-
dim_head=64,
|
392 |
-
heads=16,
|
393 |
-
num_queries=8,
|
394 |
-
embedding_dim=768,
|
395 |
-
output_dim=1024,
|
396 |
-
ff_mult=4,
|
397 |
-
):
|
398 |
-
super().__init__()
|
399 |
-
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)
|
400 |
-
self.proj_in = nn.Linear(embedding_dim, dim)
|
401 |
-
self.proj_out = nn.Linear(dim, output_dim)
|
402 |
-
self.norm_out = nn.LayerNorm(output_dim)
|
403 |
-
|
404 |
-
self.layers = nn.ModuleList([])
|
405 |
-
for _ in range(depth):
|
406 |
-
self.layers.append(
|
407 |
-
nn.ModuleList(
|
408 |
-
[
|
409 |
-
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
410 |
-
nn.Sequential(
|
411 |
-
nn.LayerNorm(dim),
|
412 |
-
nn.Linear(dim, dim * ff_mult, bias=False),
|
413 |
-
nn.GELU(),
|
414 |
-
nn.Linear(dim * ff_mult, dim, bias=False),
|
415 |
-
)
|
416 |
-
]
|
417 |
-
)
|
418 |
-
)
|
419 |
-
|
420 |
-
def forward(self, x):
|
421 |
-
latents = self.latents.repeat(x.size(0), 1, 1)
|
422 |
-
x = self.proj_in(x)
|
423 |
-
for attn, ff in self.layers:
|
424 |
-
latents = attn(x, latents) + latents
|
425 |
-
latents = ff(latents) + latents
|
426 |
-
|
427 |
-
latents = self.proj_out(latents)
|
428 |
-
return self.norm_out(latents)
|
429 |
-
|
430 |
-
|
431 |
-
class CondSequential(nn.Sequential):
|
432 |
-
"""
|
433 |
-
A sequential module that passes timestep embeddings to the children that
|
434 |
-
support it as an extra input.
|
435 |
-
"""
|
436 |
-
|
437 |
-
def forward(self, x, emb, context=None, num_frames=1):
|
438 |
-
for layer in self:
|
439 |
-
if isinstance(layer, ResBlock):
|
440 |
-
x = layer(x, emb)
|
441 |
-
elif isinstance(layer, SpatialTransformer3D):
|
442 |
-
x = layer(x, context, num_frames=num_frames)
|
443 |
-
else:
|
444 |
-
x = layer(x)
|
445 |
-
return x
|
446 |
-
|
447 |
-
|
448 |
-
class Upsample(nn.Module):
|
449 |
-
"""
|
450 |
-
An upsampling layer with an optional convolution.
|
451 |
-
:param channels: channels in the inputs and outputs.
|
452 |
-
:param use_conv: a bool determining if a convolution is applied.
|
453 |
-
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
454 |
-
upsampling occurs in the inner-two dimensions.
|
455 |
-
"""
|
456 |
-
|
457 |
-
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
458 |
-
super().__init__()
|
459 |
-
self.channels = channels
|
460 |
-
self.out_channels = out_channels or channels
|
461 |
-
self.use_conv = use_conv
|
462 |
-
self.dims = dims
|
463 |
-
if use_conv:
|
464 |
-
self.conv = conv_nd(
|
465 |
-
dims, self.channels, self.out_channels, 3, padding=padding
|
466 |
-
)
|
467 |
-
|
468 |
-
def forward(self, x):
|
469 |
-
assert x.shape[1] == self.channels
|
470 |
-
if self.dims == 3:
|
471 |
-
x = F.interpolate(
|
472 |
-
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
473 |
-
)
|
474 |
-
else:
|
475 |
-
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
476 |
-
if self.use_conv:
|
477 |
-
x = self.conv(x)
|
478 |
-
return x
|
479 |
-
|
480 |
-
|
481 |
-
class Downsample(nn.Module):
|
482 |
-
"""
|
483 |
-
A downsampling layer with an optional convolution.
|
484 |
-
:param channels: channels in the inputs and outputs.
|
485 |
-
:param use_conv: a bool determining if a convolution is applied.
|
486 |
-
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
487 |
-
downsampling occurs in the inner-two dimensions.
|
488 |
-
"""
|
489 |
-
|
490 |
-
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
491 |
-
super().__init__()
|
492 |
-
self.channels = channels
|
493 |
-
self.out_channels = out_channels or channels
|
494 |
-
self.use_conv = use_conv
|
495 |
-
self.dims = dims
|
496 |
-
stride = 2 if dims != 3 else (1, 2, 2)
|
497 |
-
if use_conv:
|
498 |
-
self.op = conv_nd(
|
499 |
-
dims,
|
500 |
-
self.channels,
|
501 |
-
self.out_channels,
|
502 |
-
3,
|
503 |
-
stride=stride,
|
504 |
-
padding=padding,
|
505 |
-
)
|
506 |
-
else:
|
507 |
-
assert self.channels == self.out_channels
|
508 |
-
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
509 |
-
|
510 |
-
def forward(self, x):
|
511 |
-
assert x.shape[1] == self.channels
|
512 |
-
return self.op(x)
|
513 |
-
|
514 |
-
|
515 |
-
class ResBlock(nn.Module):
|
516 |
-
"""
|
517 |
-
A residual block that can optionally change the number of channels.
|
518 |
-
:param channels: the number of input channels.
|
519 |
-
:param emb_channels: the number of timestep embedding channels.
|
520 |
-
:param dropout: the rate of dropout.
|
521 |
-
:param out_channels: if specified, the number of out channels.
|
522 |
-
:param use_conv: if True and out_channels is specified, use a spatial
|
523 |
-
convolution instead of a smaller 1x1 convolution to change the
|
524 |
-
channels in the skip connection.
|
525 |
-
:param dims: determines if the signal is 1D, 2D, or 3D.
|
526 |
-
:param up: if True, use this block for upsampling.
|
527 |
-
:param down: if True, use this block for downsampling.
|
528 |
-
"""
|
529 |
-
|
530 |
-
def __init__(
|
531 |
-
self,
|
532 |
-
channels,
|
533 |
-
emb_channels,
|
534 |
-
dropout,
|
535 |
-
out_channels=None,
|
536 |
-
use_conv=False,
|
537 |
-
use_scale_shift_norm=False,
|
538 |
-
dims=2,
|
539 |
-
up=False,
|
540 |
-
down=False,
|
541 |
-
):
|
542 |
-
super().__init__()
|
543 |
-
self.channels = channels
|
544 |
-
self.emb_channels = emb_channels
|
545 |
-
self.dropout = dropout
|
546 |
-
self.out_channels = out_channels or channels
|
547 |
-
self.use_conv = use_conv
|
548 |
-
self.use_scale_shift_norm = use_scale_shift_norm
|
549 |
-
|
550 |
-
self.in_layers = nn.Sequential(
|
551 |
-
nn.GroupNorm(32, channels),
|
552 |
-
nn.SiLU(),
|
553 |
-
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
554 |
-
)
|
555 |
-
|
556 |
-
self.updown = up or down
|
557 |
-
|
558 |
-
if up:
|
559 |
-
self.h_upd = Upsample(channels, False, dims)
|
560 |
-
self.x_upd = Upsample(channels, False, dims)
|
561 |
-
elif down:
|
562 |
-
self.h_upd = Downsample(channels, False, dims)
|
563 |
-
self.x_upd = Downsample(channels, False, dims)
|
564 |
-
else:
|
565 |
-
self.h_upd = self.x_upd = nn.Identity()
|
566 |
-
|
567 |
-
self.emb_layers = nn.Sequential(
|
568 |
-
nn.SiLU(),
|
569 |
-
nn.Linear(
|
570 |
-
emb_channels,
|
571 |
-
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
572 |
-
),
|
573 |
-
)
|
574 |
-
self.out_layers = nn.Sequential(
|
575 |
-
nn.GroupNorm(32, self.out_channels),
|
576 |
-
nn.SiLU(),
|
577 |
-
nn.Dropout(p=dropout),
|
578 |
-
zero_module(
|
579 |
-
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
580 |
-
),
|
581 |
-
)
|
582 |
-
|
583 |
-
if self.out_channels == channels:
|
584 |
-
self.skip_connection = nn.Identity()
|
585 |
-
elif use_conv:
|
586 |
-
self.skip_connection = conv_nd(
|
587 |
-
dims, channels, self.out_channels, 3, padding=1
|
588 |
-
)
|
589 |
-
else:
|
590 |
-
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
591 |
-
|
592 |
-
def forward(self, x, emb):
|
593 |
-
if self.updown:
|
594 |
-
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
595 |
-
h = in_rest(x)
|
596 |
-
h = self.h_upd(h)
|
597 |
-
x = self.x_upd(x)
|
598 |
-
h = in_conv(h)
|
599 |
-
else:
|
600 |
-
h = self.in_layers(x)
|
601 |
-
emb_out = self.emb_layers(emb).type(h.dtype)
|
602 |
-
while len(emb_out.shape) < len(h.shape):
|
603 |
-
emb_out = emb_out[..., None]
|
604 |
-
if self.use_scale_shift_norm:
|
605 |
-
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
606 |
-
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
607 |
-
h = out_norm(h) * (1 + scale) + shift
|
608 |
-
h = out_rest(h)
|
609 |
-
else:
|
610 |
-
h = h + emb_out
|
611 |
-
h = self.out_layers(h)
|
612 |
-
return self.skip_connection(x) + h
|
613 |
-
|
614 |
-
|
615 |
-
class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
616 |
-
"""
|
617 |
-
The full multi-view UNet model with attention, timestep embedding and camera embedding.
|
618 |
-
:param in_channels: channels in the input Tensor.
|
619 |
-
:param model_channels: base channel count for the model.
|
620 |
-
:param out_channels: channels in the output Tensor.
|
621 |
-
:param num_res_blocks: number of residual blocks per downsample.
|
622 |
-
:param attention_resolutions: a collection of downsample rates at which
|
623 |
-
attention will take place. May be a set, list, or tuple.
|
624 |
-
For example, if this contains 4, then at 4x downsampling, attention
|
625 |
-
will be used.
|
626 |
-
:param dropout: the dropout probability.
|
627 |
-
:param channel_mult: channel multiplier for each level of the UNet.
|
628 |
-
:param conv_resample: if True, use learned convolutions for upsampling and
|
629 |
-
downsampling.
|
630 |
-
:param dims: determines if the signal is 1D, 2D, or 3D.
|
631 |
-
:param num_classes: if specified (as an int), then this model will be
|
632 |
-
class-conditional with `num_classes` classes.
|
633 |
-
:param num_heads: the number of attention heads in each attention layer.
|
634 |
-
:param num_heads_channels: if specified, ignore num_heads and instead use
|
635 |
-
a fixed channel width per attention head.
|
636 |
-
:param num_heads_upsample: works with num_heads to set a different number
|
637 |
-
of heads for upsampling. Deprecated.
|
638 |
-
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
639 |
-
:param resblock_updown: use residual blocks for up/downsampling.
|
640 |
-
:param use_new_attention_order: use a different attention pattern for potentially
|
641 |
-
increased efficiency.
|
642 |
-
:param camera_dim: dimensionality of camera input.
|
643 |
-
"""
|
644 |
-
|
645 |
-
def __init__(
|
646 |
-
self,
|
647 |
-
image_size,
|
648 |
-
in_channels,
|
649 |
-
model_channels,
|
650 |
-
out_channels,
|
651 |
-
num_res_blocks,
|
652 |
-
attention_resolutions,
|
653 |
-
dropout=0,
|
654 |
-
channel_mult=(1, 2, 4, 8),
|
655 |
-
conv_resample=True,
|
656 |
-
dims=2,
|
657 |
-
num_classes=None,
|
658 |
-
num_heads=-1,
|
659 |
-
num_head_channels=-1,
|
660 |
-
num_heads_upsample=-1,
|
661 |
-
use_scale_shift_norm=False,
|
662 |
-
resblock_updown=False,
|
663 |
-
transformer_depth=1,
|
664 |
-
context_dim=None,
|
665 |
-
n_embed=None,
|
666 |
-
num_attention_blocks=None,
|
667 |
-
adm_in_channels=None,
|
668 |
-
camera_dim=None,
|
669 |
-
ip_dim=0, # imagedream uses ip_dim > 0
|
670 |
-
ip_weight=1.0,
|
671 |
-
**kwargs,
|
672 |
-
):
|
673 |
-
super().__init__()
|
674 |
-
assert context_dim is not None
|
675 |
-
|
676 |
-
if num_heads_upsample == -1:
|
677 |
-
num_heads_upsample = num_heads
|
678 |
-
|
679 |
-
if num_heads == -1:
|
680 |
-
assert (
|
681 |
-
num_head_channels != -1
|
682 |
-
), "Either num_heads or num_head_channels has to be set"
|
683 |
-
|
684 |
-
if num_head_channels == -1:
|
685 |
-
assert (
|
686 |
-
num_heads != -1
|
687 |
-
), "Either num_heads or num_head_channels has to be set"
|
688 |
-
|
689 |
-
self.image_size = image_size
|
690 |
-
self.in_channels = in_channels
|
691 |
-
self.model_channels = model_channels
|
692 |
-
self.out_channels = out_channels
|
693 |
-
if isinstance(num_res_blocks, int):
|
694 |
-
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
695 |
-
else:
|
696 |
-
if len(num_res_blocks) != len(channel_mult):
|
697 |
-
raise ValueError(
|
698 |
-
"provide num_res_blocks either as an int (globally constant) or "
|
699 |
-
"as a list/tuple (per-level) with the same length as channel_mult"
|
700 |
-
)
|
701 |
-
self.num_res_blocks = num_res_blocks
|
702 |
-
|
703 |
-
if num_attention_blocks is not None:
|
704 |
-
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
705 |
-
assert all(
|
706 |
-
map(
|
707 |
-
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
708 |
-
range(len(num_attention_blocks)),
|
709 |
-
)
|
710 |
-
)
|
711 |
-
print(
|
712 |
-
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
713 |
-
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
714 |
-
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
715 |
-
f"attention will still not be set."
|
716 |
-
)
|
717 |
-
|
718 |
-
self.attention_resolutions = attention_resolutions
|
719 |
-
self.dropout = dropout
|
720 |
-
self.channel_mult = channel_mult
|
721 |
-
self.conv_resample = conv_resample
|
722 |
-
self.num_classes = num_classes
|
723 |
-
self.num_heads = num_heads
|
724 |
-
self.num_head_channels = num_head_channels
|
725 |
-
self.num_heads_upsample = num_heads_upsample
|
726 |
-
self.predict_codebook_ids = n_embed is not None
|
727 |
-
|
728 |
-
self.ip_dim = ip_dim
|
729 |
-
self.ip_weight = ip_weight
|
730 |
-
|
731 |
-
if self.ip_dim > 0:
|
732 |
-
self.image_embed = Resampler(
|
733 |
-
dim=context_dim,
|
734 |
-
depth=4,
|
735 |
-
dim_head=64,
|
736 |
-
heads=12,
|
737 |
-
num_queries=ip_dim, # num token
|
738 |
-
embedding_dim=1280,
|
739 |
-
output_dim=context_dim,
|
740 |
-
ff_mult=4,
|
741 |
-
)
|
742 |
-
|
743 |
-
time_embed_dim = model_channels * 4
|
744 |
-
self.time_embed = nn.Sequential(
|
745 |
-
nn.Linear(model_channels, time_embed_dim),
|
746 |
-
nn.SiLU(),
|
747 |
-
nn.Linear(time_embed_dim, time_embed_dim),
|
748 |
-
)
|
749 |
-
|
750 |
-
if camera_dim is not None:
|
751 |
-
time_embed_dim = model_channels * 4
|
752 |
-
self.camera_embed = nn.Sequential(
|
753 |
-
nn.Linear(camera_dim, time_embed_dim),
|
754 |
-
nn.SiLU(),
|
755 |
-
nn.Linear(time_embed_dim, time_embed_dim),
|
756 |
-
)
|
757 |
-
|
758 |
-
if self.num_classes is not None:
|
759 |
-
if isinstance(self.num_classes, int):
|
760 |
-
self.label_emb = nn.Embedding(self.num_classes, time_embed_dim)
|
761 |
-
elif self.num_classes == "continuous":
|
762 |
-
# print("setting up linear c_adm embedding layer")
|
763 |
-
self.label_emb = nn.Linear(1, time_embed_dim)
|
764 |
-
elif self.num_classes == "sequential":
|
765 |
-
assert adm_in_channels is not None
|
766 |
-
self.label_emb = nn.Sequential(
|
767 |
-
nn.Sequential(
|
768 |
-
nn.Linear(adm_in_channels, time_embed_dim),
|
769 |
-
nn.SiLU(),
|
770 |
-
nn.Linear(time_embed_dim, time_embed_dim),
|
771 |
-
)
|
772 |
-
)
|
773 |
-
else:
|
774 |
-
raise ValueError()
|
775 |
-
|
776 |
-
self.input_blocks = nn.ModuleList(
|
777 |
-
[
|
778 |
-
CondSequential(
|
779 |
-
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
780 |
-
)
|
781 |
-
]
|
782 |
-
)
|
783 |
-
self._feature_size = model_channels
|
784 |
-
input_block_chans = [model_channels]
|
785 |
-
ch = model_channels
|
786 |
-
ds = 1
|
787 |
-
for level, mult in enumerate(channel_mult):
|
788 |
-
for nr in range(self.num_res_blocks[level]):
|
789 |
-
layers: List[Any] = [
|
790 |
-
ResBlock(
|
791 |
-
ch,
|
792 |
-
time_embed_dim,
|
793 |
-
dropout,
|
794 |
-
out_channels=mult * model_channels,
|
795 |
-
dims=dims,
|
796 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
797 |
-
)
|
798 |
-
]
|
799 |
-
ch = mult * model_channels
|
800 |
-
if ds in attention_resolutions:
|
801 |
-
if num_head_channels == -1:
|
802 |
-
dim_head = ch // num_heads
|
803 |
-
else:
|
804 |
-
num_heads = ch // num_head_channels
|
805 |
-
dim_head = num_head_channels
|
806 |
-
|
807 |
-
if num_attention_blocks is None or nr < num_attention_blocks[level]:
|
808 |
-
layers.append(
|
809 |
-
SpatialTransformer3D(
|
810 |
-
ch,
|
811 |
-
num_heads,
|
812 |
-
dim_head,
|
813 |
-
context_dim=context_dim,
|
814 |
-
depth=transformer_depth,
|
815 |
-
ip_dim=self.ip_dim,
|
816 |
-
ip_weight=self.ip_weight,
|
817 |
-
)
|
818 |
-
)
|
819 |
-
self.input_blocks.append(CondSequential(*layers))
|
820 |
-
self._feature_size += ch
|
821 |
-
input_block_chans.append(ch)
|
822 |
-
if level != len(channel_mult) - 1:
|
823 |
-
out_ch = ch
|
824 |
-
self.input_blocks.append(
|
825 |
-
CondSequential(
|
826 |
-
ResBlock(
|
827 |
-
ch,
|
828 |
-
time_embed_dim,
|
829 |
-
dropout,
|
830 |
-
out_channels=out_ch,
|
831 |
-
dims=dims,
|
832 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
833 |
-
down=True,
|
834 |
-
)
|
835 |
-
if resblock_updown
|
836 |
-
else Downsample(
|
837 |
-
ch, conv_resample, dims=dims, out_channels=out_ch
|
838 |
-
)
|
839 |
-
)
|
840 |
-
)
|
841 |
-
ch = out_ch
|
842 |
-
input_block_chans.append(ch)
|
843 |
-
ds *= 2
|
844 |
-
self._feature_size += ch
|
845 |
-
|
846 |
-
if num_head_channels == -1:
|
847 |
-
dim_head = ch // num_heads
|
848 |
-
else:
|
849 |
-
num_heads = ch // num_head_channels
|
850 |
-
dim_head = num_head_channels
|
851 |
-
|
852 |
-
self.middle_block = CondSequential(
|
853 |
-
ResBlock(
|
854 |
-
ch,
|
855 |
-
time_embed_dim,
|
856 |
-
dropout,
|
857 |
-
dims=dims,
|
858 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
859 |
-
),
|
860 |
-
SpatialTransformer3D(
|
861 |
-
ch,
|
862 |
-
num_heads,
|
863 |
-
dim_head,
|
864 |
-
context_dim=context_dim,
|
865 |
-
depth=transformer_depth,
|
866 |
-
ip_dim=self.ip_dim,
|
867 |
-
ip_weight=self.ip_weight,
|
868 |
-
),
|
869 |
-
ResBlock(
|
870 |
-
ch,
|
871 |
-
time_embed_dim,
|
872 |
-
dropout,
|
873 |
-
dims=dims,
|
874 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
875 |
-
),
|
876 |
-
)
|
877 |
-
self._feature_size += ch
|
878 |
-
|
879 |
-
self.output_blocks = nn.ModuleList([])
|
880 |
-
for level, mult in list(enumerate(channel_mult))[::-1]:
|
881 |
-
for i in range(self.num_res_blocks[level] + 1):
|
882 |
-
ich = input_block_chans.pop()
|
883 |
-
layers = [
|
884 |
-
ResBlock(
|
885 |
-
ch + ich,
|
886 |
-
time_embed_dim,
|
887 |
-
dropout,
|
888 |
-
out_channels=model_channels * mult,
|
889 |
-
dims=dims,
|
890 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
891 |
-
)
|
892 |
-
]
|
893 |
-
ch = model_channels * mult
|
894 |
-
if ds in attention_resolutions:
|
895 |
-
if num_head_channels == -1:
|
896 |
-
dim_head = ch // num_heads
|
897 |
-
else:
|
898 |
-
num_heads = ch // num_head_channels
|
899 |
-
dim_head = num_head_channels
|
900 |
-
|
901 |
-
if num_attention_blocks is None or i < num_attention_blocks[level]:
|
902 |
-
layers.append(
|
903 |
-
SpatialTransformer3D(
|
904 |
-
ch,
|
905 |
-
num_heads,
|
906 |
-
dim_head,
|
907 |
-
context_dim=context_dim,
|
908 |
-
depth=transformer_depth,
|
909 |
-
ip_dim=self.ip_dim,
|
910 |
-
ip_weight=self.ip_weight,
|
911 |
-
)
|
912 |
-
)
|
913 |
-
if level and i == self.num_res_blocks[level]:
|
914 |
-
out_ch = ch
|
915 |
-
layers.append(
|
916 |
-
ResBlock(
|
917 |
-
ch,
|
918 |
-
time_embed_dim,
|
919 |
-
dropout,
|
920 |
-
out_channels=out_ch,
|
921 |
-
dims=dims,
|
922 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
923 |
-
up=True,
|
924 |
-
)
|
925 |
-
if resblock_updown
|
926 |
-
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
927 |
-
)
|
928 |
-
ds //= 2
|
929 |
-
self.output_blocks.append(CondSequential(*layers))
|
930 |
-
self._feature_size += ch
|
931 |
-
|
932 |
-
self.out = nn.Sequential(
|
933 |
-
nn.GroupNorm(32, ch),
|
934 |
-
nn.SiLU(),
|
935 |
-
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
936 |
-
)
|
937 |
-
if self.predict_codebook_ids:
|
938 |
-
self.id_predictor = nn.Sequential(
|
939 |
-
nn.GroupNorm(32, ch),
|
940 |
-
conv_nd(dims, model_channels, n_embed, 1),
|
941 |
-
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
942 |
-
)
|
943 |
-
|
944 |
-
def forward(
|
945 |
-
self,
|
946 |
-
x,
|
947 |
-
timesteps=None,
|
948 |
-
context=None,
|
949 |
-
y=None,
|
950 |
-
camera=None,
|
951 |
-
num_frames=1,
|
952 |
-
ip=None,
|
953 |
-
ip_img=None,
|
954 |
-
**kwargs,
|
955 |
-
):
|
956 |
-
"""
|
957 |
-
Apply the model to an input batch.
|
958 |
-
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
|
959 |
-
:param timesteps: a 1-D batch of timesteps.
|
960 |
-
:param context: conditioning plugged in via crossattn
|
961 |
-
:param y: an [N] Tensor of labels, if class-conditional.
|
962 |
-
:param num_frames: a integer indicating number of frames for tensor reshaping.
|
963 |
-
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
|
964 |
-
"""
|
965 |
-
assert (
|
966 |
-
x.shape[0] % num_frames == 0
|
967 |
-
), "input batch size must be dividable by num_frames!"
|
968 |
-
assert (y is not None) == (
|
969 |
-
self.num_classes is not None
|
970 |
-
), "must specify y if and only if the model is class-conditional"
|
971 |
-
|
972 |
-
hs = []
|
973 |
-
|
974 |
-
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
975 |
-
|
976 |
-
emb = self.time_embed(t_emb)
|
977 |
-
|
978 |
-
if self.num_classes is not None:
|
979 |
-
assert y is not None
|
980 |
-
assert y.shape[0] == x.shape[0]
|
981 |
-
emb = emb + self.label_emb(y)
|
982 |
-
|
983 |
-
# Add camera embeddings
|
984 |
-
if camera is not None:
|
985 |
-
emb = emb + self.camera_embed(camera)
|
986 |
-
|
987 |
-
# imagedream variant
|
988 |
-
if self.ip_dim > 0:
|
989 |
-
x[(num_frames - 1) :: num_frames, :, :, :] = ip_img # place at [4, 9]
|
990 |
-
ip_emb = self.image_embed(ip)
|
991 |
-
context = torch.cat((context, ip_emb), 1)
|
992 |
-
|
993 |
-
h = x
|
994 |
-
for module in self.input_blocks:
|
995 |
-
h = module(h, emb, context, num_frames=num_frames)
|
996 |
-
hs.append(h)
|
997 |
-
h = self.middle_block(h, emb, context, num_frames=num_frames)
|
998 |
-
for module in self.output_blocks:
|
999 |
-
h = torch.cat([h, hs.pop()], dim=1)
|
1000 |
-
h = module(h, emb, context, num_frames=num_frames)
|
1001 |
-
h = h.type(x.dtype)
|
1002 |
-
if self.predict_codebook_ids:
|
1003 |
-
return self.id_predictor(h)
|
1004 |
-
else:
|
1005 |
return self.out(h)
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
from inspect import isfunction
|
4 |
+
from typing import Optional, Any, List
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from einops import rearrange, repeat
|
10 |
+
|
11 |
+
from diffusers.configuration_utils import ConfigMixin
|
12 |
+
from diffusers.models.modeling_utils import ModelMixin
|
13 |
+
|
14 |
+
# require xformers!
|
15 |
+
import xformers
|
16 |
+
import xformers.ops
|
17 |
+
|
18 |
+
from kiui.cam import orbit_camera
|
19 |
+
|
20 |
+
def get_camera(
|
21 |
+
num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True, extra_view=False,
|
22 |
+
):
|
23 |
+
angle_gap = azimuth_span / num_frames
|
24 |
+
cameras = []
|
25 |
+
for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
|
26 |
+
|
27 |
+
pose = orbit_camera(-elevation, azimuth, radius=1) # kiui's elevation is negated, [4, 4]
|
28 |
+
|
29 |
+
# opengl to blender
|
30 |
+
if blender_coord:
|
31 |
+
pose[2] *= -1
|
32 |
+
pose[[1, 2]] = pose[[2, 1]]
|
33 |
+
|
34 |
+
cameras.append(pose.flatten())
|
35 |
+
|
36 |
+
if extra_view:
|
37 |
+
cameras.append(np.zeros_like(cameras[0]))
|
38 |
+
|
39 |
+
return torch.from_numpy(np.stack(cameras, axis=0)).float() # [num_frames, 16]
|
40 |
+
|
41 |
+
|
42 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
43 |
+
"""
|
44 |
+
Create sinusoidal timestep embeddings.
|
45 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
46 |
+
These may be fractional.
|
47 |
+
:param dim: the dimension of the output.
|
48 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
49 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
50 |
+
"""
|
51 |
+
if not repeat_only:
|
52 |
+
half = dim // 2
|
53 |
+
freqs = torch.exp(
|
54 |
+
-math.log(max_period)
|
55 |
+
* torch.arange(start=0, end=half, dtype=torch.float32)
|
56 |
+
/ half
|
57 |
+
).to(device=timesteps.device)
|
58 |
+
args = timesteps[:, None] * freqs[None]
|
59 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
60 |
+
if dim % 2:
|
61 |
+
embedding = torch.cat(
|
62 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
embedding = repeat(timesteps, "b -> b d", d=dim)
|
66 |
+
# import pdb; pdb.set_trace()
|
67 |
+
return embedding
|
68 |
+
|
69 |
+
|
70 |
+
def zero_module(module):
|
71 |
+
"""
|
72 |
+
Zero out the parameters of a module and return it.
|
73 |
+
"""
|
74 |
+
for p in module.parameters():
|
75 |
+
p.detach().zero_()
|
76 |
+
return module
|
77 |
+
|
78 |
+
|
79 |
+
def conv_nd(dims, *args, **kwargs):
|
80 |
+
"""
|
81 |
+
Create a 1D, 2D, or 3D convolution module.
|
82 |
+
"""
|
83 |
+
if dims == 1:
|
84 |
+
return nn.Conv1d(*args, **kwargs)
|
85 |
+
elif dims == 2:
|
86 |
+
return nn.Conv2d(*args, **kwargs)
|
87 |
+
elif dims == 3:
|
88 |
+
return nn.Conv3d(*args, **kwargs)
|
89 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
90 |
+
|
91 |
+
|
92 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
93 |
+
"""
|
94 |
+
Create a 1D, 2D, or 3D average pooling module.
|
95 |
+
"""
|
96 |
+
if dims == 1:
|
97 |
+
return nn.AvgPool1d(*args, **kwargs)
|
98 |
+
elif dims == 2:
|
99 |
+
return nn.AvgPool2d(*args, **kwargs)
|
100 |
+
elif dims == 3:
|
101 |
+
return nn.AvgPool3d(*args, **kwargs)
|
102 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
103 |
+
|
104 |
+
|
105 |
+
def default(val, d):
|
106 |
+
if val is not None:
|
107 |
+
return val
|
108 |
+
return d() if isfunction(d) else d
|
109 |
+
|
110 |
+
|
111 |
+
class GEGLU(nn.Module):
|
112 |
+
def __init__(self, dim_in, dim_out):
|
113 |
+
super().__init__()
|
114 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
118 |
+
return x * F.gelu(gate)
|
119 |
+
|
120 |
+
|
121 |
+
class FeedForward(nn.Module):
|
122 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
123 |
+
super().__init__()
|
124 |
+
inner_dim = int(dim * mult)
|
125 |
+
dim_out = default(dim_out, dim)
|
126 |
+
project_in = (
|
127 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
128 |
+
if not glu
|
129 |
+
else GEGLU(dim, inner_dim)
|
130 |
+
)
|
131 |
+
|
132 |
+
self.net = nn.Sequential(
|
133 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
134 |
+
)
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
return self.net(x)
|
138 |
+
|
139 |
+
|
140 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
141 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
query_dim,
|
145 |
+
context_dim=None,
|
146 |
+
heads=8,
|
147 |
+
dim_head=64,
|
148 |
+
dropout=0.0,
|
149 |
+
ip_dim=0,
|
150 |
+
ip_weight=1,
|
151 |
+
):
|
152 |
+
super().__init__()
|
153 |
+
|
154 |
+
inner_dim = dim_head * heads
|
155 |
+
context_dim = default(context_dim, query_dim)
|
156 |
+
|
157 |
+
self.heads = heads
|
158 |
+
self.dim_head = dim_head
|
159 |
+
|
160 |
+
self.ip_dim = ip_dim
|
161 |
+
self.ip_weight = ip_weight
|
162 |
+
|
163 |
+
if self.ip_dim > 0:
|
164 |
+
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
165 |
+
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
166 |
+
|
167 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
168 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
169 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
170 |
+
|
171 |
+
self.to_out = nn.Sequential(
|
172 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
173 |
+
)
|
174 |
+
self.attention_op: Optional[Any] = None
|
175 |
+
|
176 |
+
def forward(self, x, context=None):
|
177 |
+
q = self.to_q(x)
|
178 |
+
context = default(context, x)
|
179 |
+
|
180 |
+
if self.ip_dim > 0:
|
181 |
+
# context: [B, 77 + 16(ip), 1024]
|
182 |
+
token_len = context.shape[1]
|
183 |
+
context_ip = context[:, -self.ip_dim :, :]
|
184 |
+
k_ip = self.to_k_ip(context_ip)
|
185 |
+
v_ip = self.to_v_ip(context_ip)
|
186 |
+
context = context[:, : (token_len - self.ip_dim), :]
|
187 |
+
|
188 |
+
k = self.to_k(context)
|
189 |
+
v = self.to_v(context)
|
190 |
+
|
191 |
+
b, _, _ = q.shape
|
192 |
+
q, k, v = map(
|
193 |
+
lambda t: t.unsqueeze(3)
|
194 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
195 |
+
.permute(0, 2, 1, 3)
|
196 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
197 |
+
.contiguous(),
|
198 |
+
(q, k, v),
|
199 |
+
)
|
200 |
+
|
201 |
+
# actually compute the attention, what we cannot get enough of
|
202 |
+
out = xformers.ops.memory_efficient_attention(
|
203 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
204 |
+
)
|
205 |
+
|
206 |
+
if self.ip_dim > 0:
|
207 |
+
k_ip, v_ip = map(
|
208 |
+
lambda t: t.unsqueeze(3)
|
209 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
210 |
+
.permute(0, 2, 1, 3)
|
211 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
212 |
+
.contiguous(),
|
213 |
+
(k_ip, v_ip),
|
214 |
+
)
|
215 |
+
# actually compute the attention, what we cannot get enough of
|
216 |
+
out_ip = xformers.ops.memory_efficient_attention(
|
217 |
+
q, k_ip, v_ip, attn_bias=None, op=self.attention_op
|
218 |
+
)
|
219 |
+
out = out + self.ip_weight * out_ip
|
220 |
+
|
221 |
+
out = (
|
222 |
+
out.unsqueeze(0)
|
223 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
224 |
+
.permute(0, 2, 1, 3)
|
225 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
226 |
+
)
|
227 |
+
return self.to_out(out)
|
228 |
+
|
229 |
+
|
230 |
+
class BasicTransformerBlock3D(nn.Module):
|
231 |
+
|
232 |
+
def __init__(
|
233 |
+
self,
|
234 |
+
dim,
|
235 |
+
n_heads,
|
236 |
+
d_head,
|
237 |
+
context_dim,
|
238 |
+
dropout=0.0,
|
239 |
+
gated_ff=True,
|
240 |
+
ip_dim=0,
|
241 |
+
ip_weight=1,
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
|
245 |
+
self.attn1 = MemoryEfficientCrossAttention(
|
246 |
+
query_dim=dim,
|
247 |
+
context_dim=None, # self-attention
|
248 |
+
heads=n_heads,
|
249 |
+
dim_head=d_head,
|
250 |
+
dropout=dropout,
|
251 |
+
)
|
252 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
253 |
+
self.attn2 = MemoryEfficientCrossAttention(
|
254 |
+
query_dim=dim,
|
255 |
+
context_dim=context_dim,
|
256 |
+
heads=n_heads,
|
257 |
+
dim_head=d_head,
|
258 |
+
dropout=dropout,
|
259 |
+
# ip only applies to cross-attention
|
260 |
+
ip_dim=ip_dim,
|
261 |
+
ip_weight=ip_weight,
|
262 |
+
)
|
263 |
+
self.norm1 = nn.LayerNorm(dim)
|
264 |
+
self.norm2 = nn.LayerNorm(dim)
|
265 |
+
self.norm3 = nn.LayerNorm(dim)
|
266 |
+
|
267 |
+
def forward(self, x, context=None, num_frames=1):
|
268 |
+
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
|
269 |
+
x = self.attn1(self.norm1(x), context=None) + x
|
270 |
+
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
|
271 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
272 |
+
x = self.ff(self.norm3(x)) + x
|
273 |
+
return x
|
274 |
+
|
275 |
+
|
276 |
+
class SpatialTransformer3D(nn.Module):
|
277 |
+
|
278 |
+
def __init__(
|
279 |
+
self,
|
280 |
+
in_channels,
|
281 |
+
n_heads,
|
282 |
+
d_head,
|
283 |
+
context_dim, # cross attention input dim
|
284 |
+
depth=1,
|
285 |
+
dropout=0.0,
|
286 |
+
ip_dim=0,
|
287 |
+
ip_weight=1,
|
288 |
+
):
|
289 |
+
super().__init__()
|
290 |
+
|
291 |
+
if not isinstance(context_dim, list):
|
292 |
+
context_dim = [context_dim]
|
293 |
+
|
294 |
+
self.in_channels = in_channels
|
295 |
+
|
296 |
+
inner_dim = n_heads * d_head
|
297 |
+
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
298 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
299 |
+
|
300 |
+
self.transformer_blocks = nn.ModuleList(
|
301 |
+
[
|
302 |
+
BasicTransformerBlock3D(
|
303 |
+
inner_dim,
|
304 |
+
n_heads,
|
305 |
+
d_head,
|
306 |
+
context_dim=context_dim[d],
|
307 |
+
dropout=dropout,
|
308 |
+
ip_dim=ip_dim,
|
309 |
+
ip_weight=ip_weight,
|
310 |
+
)
|
311 |
+
for d in range(depth)
|
312 |
+
]
|
313 |
+
)
|
314 |
+
|
315 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
316 |
+
|
317 |
+
|
318 |
+
def forward(self, x, context=None, num_frames=1):
|
319 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
320 |
+
if not isinstance(context, list):
|
321 |
+
context = [context]
|
322 |
+
b, c, h, w = x.shape
|
323 |
+
x_in = x
|
324 |
+
x = self.norm(x)
|
325 |
+
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
326 |
+
x = self.proj_in(x)
|
327 |
+
for i, block in enumerate(self.transformer_blocks):
|
328 |
+
x = block(x, context=context[i], num_frames=num_frames)
|
329 |
+
x = self.proj_out(x)
|
330 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
331 |
+
|
332 |
+
return x + x_in
|
333 |
+
|
334 |
+
|
335 |
+
class PerceiverAttention(nn.Module):
|
336 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
337 |
+
super().__init__()
|
338 |
+
self.scale = dim_head ** -0.5
|
339 |
+
self.dim_head = dim_head
|
340 |
+
self.heads = heads
|
341 |
+
inner_dim = dim_head * heads
|
342 |
+
|
343 |
+
self.norm1 = nn.LayerNorm(dim)
|
344 |
+
self.norm2 = nn.LayerNorm(dim)
|
345 |
+
|
346 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
347 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
348 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
349 |
+
|
350 |
+
def forward(self, x, latents):
|
351 |
+
"""
|
352 |
+
Args:
|
353 |
+
x (torch.Tensor): image features
|
354 |
+
shape (b, n1, D)
|
355 |
+
latent (torch.Tensor): latent features
|
356 |
+
shape (b, n2, D)
|
357 |
+
"""
|
358 |
+
x = self.norm1(x)
|
359 |
+
latents = self.norm2(latents)
|
360 |
+
|
361 |
+
b, l, _ = latents.shape
|
362 |
+
|
363 |
+
q = self.to_q(latents)
|
364 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
365 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
366 |
+
|
367 |
+
q, k, v = map(
|
368 |
+
lambda t: t.reshape(b, t.shape[1], self.heads, -1)
|
369 |
+
.transpose(1, 2)
|
370 |
+
.reshape(b, self.heads, t.shape[1], -1)
|
371 |
+
.contiguous(),
|
372 |
+
(q, k, v),
|
373 |
+
)
|
374 |
+
|
375 |
+
# attention
|
376 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
377 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
378 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
379 |
+
out = weight @ v
|
380 |
+
|
381 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
382 |
+
|
383 |
+
return self.to_out(out)
|
384 |
+
|
385 |
+
|
386 |
+
class Resampler(nn.Module):
|
387 |
+
def __init__(
|
388 |
+
self,
|
389 |
+
dim=1024,
|
390 |
+
depth=8,
|
391 |
+
dim_head=64,
|
392 |
+
heads=16,
|
393 |
+
num_queries=8,
|
394 |
+
embedding_dim=768,
|
395 |
+
output_dim=1024,
|
396 |
+
ff_mult=4,
|
397 |
+
):
|
398 |
+
super().__init__()
|
399 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)
|
400 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
401 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
402 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
403 |
+
|
404 |
+
self.layers = nn.ModuleList([])
|
405 |
+
for _ in range(depth):
|
406 |
+
self.layers.append(
|
407 |
+
nn.ModuleList(
|
408 |
+
[
|
409 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
410 |
+
nn.Sequential(
|
411 |
+
nn.LayerNorm(dim),
|
412 |
+
nn.Linear(dim, dim * ff_mult, bias=False),
|
413 |
+
nn.GELU(),
|
414 |
+
nn.Linear(dim * ff_mult, dim, bias=False),
|
415 |
+
)
|
416 |
+
]
|
417 |
+
)
|
418 |
+
)
|
419 |
+
|
420 |
+
def forward(self, x):
|
421 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
422 |
+
x = self.proj_in(x)
|
423 |
+
for attn, ff in self.layers:
|
424 |
+
latents = attn(x, latents) + latents
|
425 |
+
latents = ff(latents) + latents
|
426 |
+
|
427 |
+
latents = self.proj_out(latents)
|
428 |
+
return self.norm_out(latents)
|
429 |
+
|
430 |
+
|
431 |
+
class CondSequential(nn.Sequential):
|
432 |
+
"""
|
433 |
+
A sequential module that passes timestep embeddings to the children that
|
434 |
+
support it as an extra input.
|
435 |
+
"""
|
436 |
+
|
437 |
+
def forward(self, x, emb, context=None, num_frames=1):
|
438 |
+
for layer in self:
|
439 |
+
if isinstance(layer, ResBlock):
|
440 |
+
x = layer(x, emb)
|
441 |
+
elif isinstance(layer, SpatialTransformer3D):
|
442 |
+
x = layer(x, context, num_frames=num_frames)
|
443 |
+
else:
|
444 |
+
x = layer(x)
|
445 |
+
return x
|
446 |
+
|
447 |
+
|
448 |
+
class Upsample(nn.Module):
|
449 |
+
"""
|
450 |
+
An upsampling layer with an optional convolution.
|
451 |
+
:param channels: channels in the inputs and outputs.
|
452 |
+
:param use_conv: a bool determining if a convolution is applied.
|
453 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
454 |
+
upsampling occurs in the inner-two dimensions.
|
455 |
+
"""
|
456 |
+
|
457 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
458 |
+
super().__init__()
|
459 |
+
self.channels = channels
|
460 |
+
self.out_channels = out_channels or channels
|
461 |
+
self.use_conv = use_conv
|
462 |
+
self.dims = dims
|
463 |
+
if use_conv:
|
464 |
+
self.conv = conv_nd(
|
465 |
+
dims, self.channels, self.out_channels, 3, padding=padding
|
466 |
+
)
|
467 |
+
|
468 |
+
def forward(self, x):
|
469 |
+
assert x.shape[1] == self.channels
|
470 |
+
if self.dims == 3:
|
471 |
+
x = F.interpolate(
|
472 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
473 |
+
)
|
474 |
+
else:
|
475 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
476 |
+
if self.use_conv:
|
477 |
+
x = self.conv(x)
|
478 |
+
return x
|
479 |
+
|
480 |
+
|
481 |
+
class Downsample(nn.Module):
|
482 |
+
"""
|
483 |
+
A downsampling layer with an optional convolution.
|
484 |
+
:param channels: channels in the inputs and outputs.
|
485 |
+
:param use_conv: a bool determining if a convolution is applied.
|
486 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
487 |
+
downsampling occurs in the inner-two dimensions.
|
488 |
+
"""
|
489 |
+
|
490 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
491 |
+
super().__init__()
|
492 |
+
self.channels = channels
|
493 |
+
self.out_channels = out_channels or channels
|
494 |
+
self.use_conv = use_conv
|
495 |
+
self.dims = dims
|
496 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
497 |
+
if use_conv:
|
498 |
+
self.op = conv_nd(
|
499 |
+
dims,
|
500 |
+
self.channels,
|
501 |
+
self.out_channels,
|
502 |
+
3,
|
503 |
+
stride=stride,
|
504 |
+
padding=padding,
|
505 |
+
)
|
506 |
+
else:
|
507 |
+
assert self.channels == self.out_channels
|
508 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
509 |
+
|
510 |
+
def forward(self, x):
|
511 |
+
assert x.shape[1] == self.channels
|
512 |
+
return self.op(x)
|
513 |
+
|
514 |
+
|
515 |
+
class ResBlock(nn.Module):
|
516 |
+
"""
|
517 |
+
A residual block that can optionally change the number of channels.
|
518 |
+
:param channels: the number of input channels.
|
519 |
+
:param emb_channels: the number of timestep embedding channels.
|
520 |
+
:param dropout: the rate of dropout.
|
521 |
+
:param out_channels: if specified, the number of out channels.
|
522 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
523 |
+
convolution instead of a smaller 1x1 convolution to change the
|
524 |
+
channels in the skip connection.
|
525 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
526 |
+
:param up: if True, use this block for upsampling.
|
527 |
+
:param down: if True, use this block for downsampling.
|
528 |
+
"""
|
529 |
+
|
530 |
+
def __init__(
|
531 |
+
self,
|
532 |
+
channels,
|
533 |
+
emb_channels,
|
534 |
+
dropout,
|
535 |
+
out_channels=None,
|
536 |
+
use_conv=False,
|
537 |
+
use_scale_shift_norm=False,
|
538 |
+
dims=2,
|
539 |
+
up=False,
|
540 |
+
down=False,
|
541 |
+
):
|
542 |
+
super().__init__()
|
543 |
+
self.channels = channels
|
544 |
+
self.emb_channels = emb_channels
|
545 |
+
self.dropout = dropout
|
546 |
+
self.out_channels = out_channels or channels
|
547 |
+
self.use_conv = use_conv
|
548 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
549 |
+
|
550 |
+
self.in_layers = nn.Sequential(
|
551 |
+
nn.GroupNorm(32, channels),
|
552 |
+
nn.SiLU(),
|
553 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
554 |
+
)
|
555 |
+
|
556 |
+
self.updown = up or down
|
557 |
+
|
558 |
+
if up:
|
559 |
+
self.h_upd = Upsample(channels, False, dims)
|
560 |
+
self.x_upd = Upsample(channels, False, dims)
|
561 |
+
elif down:
|
562 |
+
self.h_upd = Downsample(channels, False, dims)
|
563 |
+
self.x_upd = Downsample(channels, False, dims)
|
564 |
+
else:
|
565 |
+
self.h_upd = self.x_upd = nn.Identity()
|
566 |
+
|
567 |
+
self.emb_layers = nn.Sequential(
|
568 |
+
nn.SiLU(),
|
569 |
+
nn.Linear(
|
570 |
+
emb_channels,
|
571 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
572 |
+
),
|
573 |
+
)
|
574 |
+
self.out_layers = nn.Sequential(
|
575 |
+
nn.GroupNorm(32, self.out_channels),
|
576 |
+
nn.SiLU(),
|
577 |
+
nn.Dropout(p=dropout),
|
578 |
+
zero_module(
|
579 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
580 |
+
),
|
581 |
+
)
|
582 |
+
|
583 |
+
if self.out_channels == channels:
|
584 |
+
self.skip_connection = nn.Identity()
|
585 |
+
elif use_conv:
|
586 |
+
self.skip_connection = conv_nd(
|
587 |
+
dims, channels, self.out_channels, 3, padding=1
|
588 |
+
)
|
589 |
+
else:
|
590 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
591 |
+
|
592 |
+
def forward(self, x, emb):
|
593 |
+
if self.updown:
|
594 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
595 |
+
h = in_rest(x)
|
596 |
+
h = self.h_upd(h)
|
597 |
+
x = self.x_upd(x)
|
598 |
+
h = in_conv(h)
|
599 |
+
else:
|
600 |
+
h = self.in_layers(x)
|
601 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
602 |
+
while len(emb_out.shape) < len(h.shape):
|
603 |
+
emb_out = emb_out[..., None]
|
604 |
+
if self.use_scale_shift_norm:
|
605 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
606 |
+
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
607 |
+
h = out_norm(h) * (1 + scale) + shift
|
608 |
+
h = out_rest(h)
|
609 |
+
else:
|
610 |
+
h = h + emb_out
|
611 |
+
h = self.out_layers(h)
|
612 |
+
return self.skip_connection(x) + h
|
613 |
+
|
614 |
+
|
615 |
+
class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
616 |
+
"""
|
617 |
+
The full multi-view UNet model with attention, timestep embedding and camera embedding.
|
618 |
+
:param in_channels: channels in the input Tensor.
|
619 |
+
:param model_channels: base channel count for the model.
|
620 |
+
:param out_channels: channels in the output Tensor.
|
621 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
622 |
+
:param attention_resolutions: a collection of downsample rates at which
|
623 |
+
attention will take place. May be a set, list, or tuple.
|
624 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
625 |
+
will be used.
|
626 |
+
:param dropout: the dropout probability.
|
627 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
628 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
629 |
+
downsampling.
|
630 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
631 |
+
:param num_classes: if specified (as an int), then this model will be
|
632 |
+
class-conditional with `num_classes` classes.
|
633 |
+
:param num_heads: the number of attention heads in each attention layer.
|
634 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
635 |
+
a fixed channel width per attention head.
|
636 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
637 |
+
of heads for upsampling. Deprecated.
|
638 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
639 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
640 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
641 |
+
increased efficiency.
|
642 |
+
:param camera_dim: dimensionality of camera input.
|
643 |
+
"""
|
644 |
+
|
645 |
+
def __init__(
|
646 |
+
self,
|
647 |
+
image_size,
|
648 |
+
in_channels,
|
649 |
+
model_channels,
|
650 |
+
out_channels,
|
651 |
+
num_res_blocks,
|
652 |
+
attention_resolutions,
|
653 |
+
dropout=0,
|
654 |
+
channel_mult=(1, 2, 4, 8),
|
655 |
+
conv_resample=True,
|
656 |
+
dims=2,
|
657 |
+
num_classes=None,
|
658 |
+
num_heads=-1,
|
659 |
+
num_head_channels=-1,
|
660 |
+
num_heads_upsample=-1,
|
661 |
+
use_scale_shift_norm=False,
|
662 |
+
resblock_updown=False,
|
663 |
+
transformer_depth=1,
|
664 |
+
context_dim=None,
|
665 |
+
n_embed=None,
|
666 |
+
num_attention_blocks=None,
|
667 |
+
adm_in_channels=None,
|
668 |
+
camera_dim=None,
|
669 |
+
ip_dim=0, # imagedream uses ip_dim > 0
|
670 |
+
ip_weight=1.0,
|
671 |
+
**kwargs,
|
672 |
+
):
|
673 |
+
super().__init__()
|
674 |
+
assert context_dim is not None
|
675 |
+
|
676 |
+
if num_heads_upsample == -1:
|
677 |
+
num_heads_upsample = num_heads
|
678 |
+
|
679 |
+
if num_heads == -1:
|
680 |
+
assert (
|
681 |
+
num_head_channels != -1
|
682 |
+
), "Either num_heads or num_head_channels has to be set"
|
683 |
+
|
684 |
+
if num_head_channels == -1:
|
685 |
+
assert (
|
686 |
+
num_heads != -1
|
687 |
+
), "Either num_heads or num_head_channels has to be set"
|
688 |
+
|
689 |
+
self.image_size = image_size
|
690 |
+
self.in_channels = in_channels
|
691 |
+
self.model_channels = model_channels
|
692 |
+
self.out_channels = out_channels
|
693 |
+
if isinstance(num_res_blocks, int):
|
694 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
695 |
+
else:
|
696 |
+
if len(num_res_blocks) != len(channel_mult):
|
697 |
+
raise ValueError(
|
698 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
699 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
700 |
+
)
|
701 |
+
self.num_res_blocks = num_res_blocks
|
702 |
+
|
703 |
+
if num_attention_blocks is not None:
|
704 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
705 |
+
assert all(
|
706 |
+
map(
|
707 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
708 |
+
range(len(num_attention_blocks)),
|
709 |
+
)
|
710 |
+
)
|
711 |
+
print(
|
712 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
713 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
714 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
715 |
+
f"attention will still not be set."
|
716 |
+
)
|
717 |
+
|
718 |
+
self.attention_resolutions = attention_resolutions
|
719 |
+
self.dropout = dropout
|
720 |
+
self.channel_mult = channel_mult
|
721 |
+
self.conv_resample = conv_resample
|
722 |
+
self.num_classes = num_classes
|
723 |
+
self.num_heads = num_heads
|
724 |
+
self.num_head_channels = num_head_channels
|
725 |
+
self.num_heads_upsample = num_heads_upsample
|
726 |
+
self.predict_codebook_ids = n_embed is not None
|
727 |
+
|
728 |
+
self.ip_dim = ip_dim
|
729 |
+
self.ip_weight = ip_weight
|
730 |
+
|
731 |
+
if self.ip_dim > 0:
|
732 |
+
self.image_embed = Resampler(
|
733 |
+
dim=context_dim,
|
734 |
+
depth=4,
|
735 |
+
dim_head=64,
|
736 |
+
heads=12,
|
737 |
+
num_queries=ip_dim, # num token
|
738 |
+
embedding_dim=1280,
|
739 |
+
output_dim=context_dim,
|
740 |
+
ff_mult=4,
|
741 |
+
)
|
742 |
+
|
743 |
+
time_embed_dim = model_channels * 4
|
744 |
+
self.time_embed = nn.Sequential(
|
745 |
+
nn.Linear(model_channels, time_embed_dim),
|
746 |
+
nn.SiLU(),
|
747 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
748 |
+
)
|
749 |
+
|
750 |
+
if camera_dim is not None:
|
751 |
+
time_embed_dim = model_channels * 4
|
752 |
+
self.camera_embed = nn.Sequential(
|
753 |
+
nn.Linear(camera_dim, time_embed_dim),
|
754 |
+
nn.SiLU(),
|
755 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
756 |
+
)
|
757 |
+
|
758 |
+
if self.num_classes is not None:
|
759 |
+
if isinstance(self.num_classes, int):
|
760 |
+
self.label_emb = nn.Embedding(self.num_classes, time_embed_dim)
|
761 |
+
elif self.num_classes == "continuous":
|
762 |
+
# print("setting up linear c_adm embedding layer")
|
763 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
764 |
+
elif self.num_classes == "sequential":
|
765 |
+
assert adm_in_channels is not None
|
766 |
+
self.label_emb = nn.Sequential(
|
767 |
+
nn.Sequential(
|
768 |
+
nn.Linear(adm_in_channels, time_embed_dim),
|
769 |
+
nn.SiLU(),
|
770 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
771 |
+
)
|
772 |
+
)
|
773 |
+
else:
|
774 |
+
raise ValueError()
|
775 |
+
|
776 |
+
self.input_blocks = nn.ModuleList(
|
777 |
+
[
|
778 |
+
CondSequential(
|
779 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
780 |
+
)
|
781 |
+
]
|
782 |
+
)
|
783 |
+
self._feature_size = model_channels
|
784 |
+
input_block_chans = [model_channels]
|
785 |
+
ch = model_channels
|
786 |
+
ds = 1
|
787 |
+
for level, mult in enumerate(channel_mult):
|
788 |
+
for nr in range(self.num_res_blocks[level]):
|
789 |
+
layers: List[Any] = [
|
790 |
+
ResBlock(
|
791 |
+
ch,
|
792 |
+
time_embed_dim,
|
793 |
+
dropout,
|
794 |
+
out_channels=mult * model_channels,
|
795 |
+
dims=dims,
|
796 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
797 |
+
)
|
798 |
+
]
|
799 |
+
ch = mult * model_channels
|
800 |
+
if ds in attention_resolutions:
|
801 |
+
if num_head_channels == -1:
|
802 |
+
dim_head = ch // num_heads
|
803 |
+
else:
|
804 |
+
num_heads = ch // num_head_channels
|
805 |
+
dim_head = num_head_channels
|
806 |
+
|
807 |
+
if num_attention_blocks is None or nr < num_attention_blocks[level]:
|
808 |
+
layers.append(
|
809 |
+
SpatialTransformer3D(
|
810 |
+
ch,
|
811 |
+
num_heads,
|
812 |
+
dim_head,
|
813 |
+
context_dim=context_dim,
|
814 |
+
depth=transformer_depth,
|
815 |
+
ip_dim=self.ip_dim,
|
816 |
+
ip_weight=self.ip_weight,
|
817 |
+
)
|
818 |
+
)
|
819 |
+
self.input_blocks.append(CondSequential(*layers))
|
820 |
+
self._feature_size += ch
|
821 |
+
input_block_chans.append(ch)
|
822 |
+
if level != len(channel_mult) - 1:
|
823 |
+
out_ch = ch
|
824 |
+
self.input_blocks.append(
|
825 |
+
CondSequential(
|
826 |
+
ResBlock(
|
827 |
+
ch,
|
828 |
+
time_embed_dim,
|
829 |
+
dropout,
|
830 |
+
out_channels=out_ch,
|
831 |
+
dims=dims,
|
832 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
833 |
+
down=True,
|
834 |
+
)
|
835 |
+
if resblock_updown
|
836 |
+
else Downsample(
|
837 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
838 |
+
)
|
839 |
+
)
|
840 |
+
)
|
841 |
+
ch = out_ch
|
842 |
+
input_block_chans.append(ch)
|
843 |
+
ds *= 2
|
844 |
+
self._feature_size += ch
|
845 |
+
|
846 |
+
if num_head_channels == -1:
|
847 |
+
dim_head = ch // num_heads
|
848 |
+
else:
|
849 |
+
num_heads = ch // num_head_channels
|
850 |
+
dim_head = num_head_channels
|
851 |
+
|
852 |
+
self.middle_block = CondSequential(
|
853 |
+
ResBlock(
|
854 |
+
ch,
|
855 |
+
time_embed_dim,
|
856 |
+
dropout,
|
857 |
+
dims=dims,
|
858 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
859 |
+
),
|
860 |
+
SpatialTransformer3D(
|
861 |
+
ch,
|
862 |
+
num_heads,
|
863 |
+
dim_head,
|
864 |
+
context_dim=context_dim,
|
865 |
+
depth=transformer_depth,
|
866 |
+
ip_dim=self.ip_dim,
|
867 |
+
ip_weight=self.ip_weight,
|
868 |
+
),
|
869 |
+
ResBlock(
|
870 |
+
ch,
|
871 |
+
time_embed_dim,
|
872 |
+
dropout,
|
873 |
+
dims=dims,
|
874 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
875 |
+
),
|
876 |
+
)
|
877 |
+
self._feature_size += ch
|
878 |
+
|
879 |
+
self.output_blocks = nn.ModuleList([])
|
880 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
881 |
+
for i in range(self.num_res_blocks[level] + 1):
|
882 |
+
ich = input_block_chans.pop()
|
883 |
+
layers = [
|
884 |
+
ResBlock(
|
885 |
+
ch + ich,
|
886 |
+
time_embed_dim,
|
887 |
+
dropout,
|
888 |
+
out_channels=model_channels * mult,
|
889 |
+
dims=dims,
|
890 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
891 |
+
)
|
892 |
+
]
|
893 |
+
ch = model_channels * mult
|
894 |
+
if ds in attention_resolutions:
|
895 |
+
if num_head_channels == -1:
|
896 |
+
dim_head = ch // num_heads
|
897 |
+
else:
|
898 |
+
num_heads = ch // num_head_channels
|
899 |
+
dim_head = num_head_channels
|
900 |
+
|
901 |
+
if num_attention_blocks is None or i < num_attention_blocks[level]:
|
902 |
+
layers.append(
|
903 |
+
SpatialTransformer3D(
|
904 |
+
ch,
|
905 |
+
num_heads,
|
906 |
+
dim_head,
|
907 |
+
context_dim=context_dim,
|
908 |
+
depth=transformer_depth,
|
909 |
+
ip_dim=self.ip_dim,
|
910 |
+
ip_weight=self.ip_weight,
|
911 |
+
)
|
912 |
+
)
|
913 |
+
if level and i == self.num_res_blocks[level]:
|
914 |
+
out_ch = ch
|
915 |
+
layers.append(
|
916 |
+
ResBlock(
|
917 |
+
ch,
|
918 |
+
time_embed_dim,
|
919 |
+
dropout,
|
920 |
+
out_channels=out_ch,
|
921 |
+
dims=dims,
|
922 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
923 |
+
up=True,
|
924 |
+
)
|
925 |
+
if resblock_updown
|
926 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
927 |
+
)
|
928 |
+
ds //= 2
|
929 |
+
self.output_blocks.append(CondSequential(*layers))
|
930 |
+
self._feature_size += ch
|
931 |
+
|
932 |
+
self.out = nn.Sequential(
|
933 |
+
nn.GroupNorm(32, ch),
|
934 |
+
nn.SiLU(),
|
935 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
936 |
+
)
|
937 |
+
if self.predict_codebook_ids:
|
938 |
+
self.id_predictor = nn.Sequential(
|
939 |
+
nn.GroupNorm(32, ch),
|
940 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
941 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
942 |
+
)
|
943 |
+
|
944 |
+
def forward(
|
945 |
+
self,
|
946 |
+
x,
|
947 |
+
timesteps=None,
|
948 |
+
context=None,
|
949 |
+
y=None,
|
950 |
+
camera=None,
|
951 |
+
num_frames=1,
|
952 |
+
ip=None,
|
953 |
+
ip_img=None,
|
954 |
+
**kwargs,
|
955 |
+
):
|
956 |
+
"""
|
957 |
+
Apply the model to an input batch.
|
958 |
+
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
|
959 |
+
:param timesteps: a 1-D batch of timesteps.
|
960 |
+
:param context: conditioning plugged in via crossattn
|
961 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
962 |
+
:param num_frames: a integer indicating number of frames for tensor reshaping.
|
963 |
+
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
|
964 |
+
"""
|
965 |
+
assert (
|
966 |
+
x.shape[0] % num_frames == 0
|
967 |
+
), "input batch size must be dividable by num_frames!"
|
968 |
+
assert (y is not None) == (
|
969 |
+
self.num_classes is not None
|
970 |
+
), "must specify y if and only if the model is class-conditional"
|
971 |
+
|
972 |
+
hs = []
|
973 |
+
|
974 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
975 |
+
|
976 |
+
emb = self.time_embed(t_emb)
|
977 |
+
|
978 |
+
if self.num_classes is not None:
|
979 |
+
assert y is not None
|
980 |
+
assert y.shape[0] == x.shape[0]
|
981 |
+
emb = emb + self.label_emb(y)
|
982 |
+
|
983 |
+
# Add camera embeddings
|
984 |
+
if camera is not None:
|
985 |
+
emb = emb + self.camera_embed(camera)
|
986 |
+
|
987 |
+
# imagedream variant
|
988 |
+
if self.ip_dim > 0 and ip:
|
989 |
+
x[(num_frames - 1) :: num_frames, :, :, :] = ip_img # place at [4, 9]
|
990 |
+
ip_emb = self.image_embed(ip)
|
991 |
+
context = torch.cat((context, ip_emb), 1)
|
992 |
+
|
993 |
+
h = x
|
994 |
+
for module in self.input_blocks:
|
995 |
+
h = module(h, emb, context, num_frames=num_frames)
|
996 |
+
hs.append(h)
|
997 |
+
h = self.middle_block(h, emb, context, num_frames=num_frames)
|
998 |
+
for module in self.output_blocks:
|
999 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
1000 |
+
h = module(h, emb, context, num_frames=num_frames)
|
1001 |
+
h = h.type(x.dtype)
|
1002 |
+
if self.predict_codebook_ids:
|
1003 |
+
return self.id_predictor(h)
|
1004 |
+
else:
|
1005 |
return self.out(h)
|