bheshaj commited on
Commit
bffe47a
1 Parent(s): 6a3d022

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - billsum
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: bart-large-cnn-small-billsum-5epochs
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: billsum
17
+ type: billsum
18
+ config: default
19
+ split: train[:1%]
20
+ args: default
21
+ metrics:
22
+ - name: Rouge1
23
+ type: rouge
24
+ value: 0.5406
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # bart-large-cnn-small-billsum-5epochs
31
+
32
+ This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the billsum dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.7206
35
+ - Rouge1: 0.5406
36
+ - Rouge2: 0.312
37
+ - Rougel: 0.3945
38
+ - Rougelsum: 0.4566
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 3.373e-05
58
+ - train_batch_size: 4
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - gradient_accumulation_steps: 4
62
+ - total_train_batch_size: 16
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - lr_scheduler_warmup_steps: 16
66
+ - num_epochs: 5
67
+ - mixed_precision_training: Native AMP
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
72
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
73
+ | 2.3723 | 1.33 | 16 | 1.8534 | 0.5204 | 0.299 | 0.3893 | 0.4441 |
74
+ | 1.6579 | 2.67 | 32 | 1.7208 | 0.5427 | 0.3143 | 0.3915 | 0.459 |
75
+ | 1.2397 | 4.0 | 48 | 1.7206 | 0.5406 | 0.312 | 0.3945 | 0.4566 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.25.1
81
+ - Pytorch 1.13.0+cu117
82
+ - Datasets 2.7.1
83
+ - Tokenizers 0.13.2