bhadresh-savani commited on
Commit
8705b77
·
1 Parent(s): ef1dfba

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2119.20 +/- 120.39
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64cea58b1908c24ec2821888551573bfb0c6564f92d96a2d743dc356e202981a
3
+ size 129193
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e2e4f8820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e2e4f88b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e2e4f8940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e2e4f89d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5e2e4f8a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5e2e4f8af0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5e2e4f8b80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e2e4f8c10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5e2e4f8ca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e2e4f8d30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e2e4f8dc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e2e4f8e50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f5e2e509740>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1682757855502187009,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPeyWz5vd2o/7AlKv5dHlT9s1No/NrqxP/KDDD8MfdS+SkmfvwRbnj7LXiw/Pm5Jv+Ws9r18bak/v4hgv7embL26Vua+YHYovlwUDj+bkaI8hLIXP5cVk7+CXnw/nGK1PpApM78Huzs/3daWPpUwOj/9jpU+2iMZP0aWT76t/Yc+sAqZP04cgj+snNU+7UQGv/okHb+FCJi9W5ocP/eOgL8Dl169G3FvP7ZbIL9EY/u9U0uUvlsyyz7Vgg0/uvhyPEbfJT56Dk6/1mFiP/Do8b2QKTO/B7s7P93Wlj6VMDo/iroaP+srOj/dSdK+e9NHP0COxT+bn6Y/btRbP/4F+r55gbi/e7ACv4MKAj/eH6i/uowpP8Azjz+jHHu/ohLEPgN4ob5hcGi+gP4MP4NqtDzWTp67eH+Jv0caNj9PVzC+kCkzvwe7Oz/d1pY+lTA6PwJEkD+pkhU/BnY6viD2gj887nw/xBOPP2wucz/LBWy/8Gmev7zfxr6pKRO+CCxjv4s3jT/d3Ds/oV0ov62UST8Hvw2/VeN4vuekDT9taeg8gOxMvz7ugL8Zj2c/1u/vvpApM78Huzs/3daWPpUwOj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABr8gY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmZYlvQAAAAB+z/S/AAAAAJUpH70AAAAA4eHcPwAAAABzKqg9AAAAAIMO8T8AAAAAPZ1juwAAAAD+Gfy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7uyUtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJoobb0AAAAAbrzmvwAAAABPcqc8AAAAAIYg2T8AAAAAMFK1PAAAAADZ/uA/AAAAAHJuEj4AAAAArXD7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsV9TYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBsW6m8AAAAANZH5b8AAAAAJizxPQAAAADlJuk/AAAAAGcPrj0AAAAA7AD7PwAAAABmrbu9AAAAACAp8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPGNO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPZcEPAAAAAAL7vO/AAAAAABqAL4AAAAAVJHcPwAAAAAS9rW9AAAAAIao/z8AAAAAzAdOPQAAAABNRuq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKEHoEkjX4GMAWyUTegDjAF0lEdApjBQrQPZqXV9lChoBkdAoUStIGyHEmgHTegDaAhHQKYyZeCTUy51fZQoaAZHQKE4cW8h9stoB03oA2gIR0CmMrQA2hqTdX2UKGgGR0Cg/V/mknCwaAdN6ANoCEdApjgYla8pTnV9lChoBkdAoOM7qfOD8WgHTegDaAhHQKY7ZNNahYh1fZQoaAZHQKEMRs2vStxoB03oA2gIR0CmPXMa0hNedX2UKGgGR0ChvK101ZTyaAdN6ANoCEdApj22A/cFhXV9lChoBkdAoQ7hZOi35WgHTegDaAhHQKZC3SVGCqZ1fZQoaAZHQJ/OCX0Gu9xoB03oA2gIR0CmRgW2gFotdX2UKGgGR0Cg4PvlEJBxaAdN6ANoCEdApkgHjMmnfnV9lChoBkdAoTtbXpW3jWgHTegDaAhHQKZISo6S1Vp1fZQoaAZHQKBuAysS00FoB03oA2gIR0CmTTXjuKGddX2UKGgGR0CgznJCjUNKaAdN6ANoCEdAplBdsLv1DnV9lChoBkdAoJWBYNiH7GgHTegDaAhHQKZSZ974SHx1fZQoaAZHQKEfBsZ5zHVoB03oA2gIR0CmUrC3XqZ/dX2UKGgGR0Cgo9DSw4bTaAdN6ANoCEdAplebI/7iynV9lChoBkdAocUUW/JvHmgHTegDaAhHQKZa/VjqfOF1fZQoaAZHQKG+AdMj/uNoB03oA2gIR0CmXRtHYpUhdX2UKGgGR0ChahYht+CsaAdN6ANoCEdApl1iTINmUXV9lChoBkdAoecA8IRh+mgHTegDaAhHQKZiRdSl3yJ1fZQoaAZHQKG2qf9P1thoB03oA2gIR0CmZXr6LwWndX2UKGgGR0ChNK86mwaBaAdN6ANoCEdApmdxe3QUpXV9lChoBkdAoc9Csr/bTWgHTegDaAhHQKZntI5o4+91fZQoaAZHQKA2AoaUA1hoB03oA2gIR0CmbLCkGiYcdX2UKGgGR0Cd6ua+evpyaAdN6ANoCEdApm/y9ugpSnV9lChoBkdAnSih5Pdl/mgHTegDaAhHQKZx9M/QjUx1fZQoaAZHQJy4Sws5GSZoB03oA2gIR0CmcjZi/fwadX2UKGgGR0CffxcKgIyCaAdN6ANoCEdApnckxREWqXV9lChoBkdAoLsWWrwOOWgHTegDaAhHQKZ6TxkNF0B1fZQoaAZHQKBRkIWP91loB03oA2gIR0CmfFcHv+fidX2UKGgGR0Ca0BySFGoaaAdN6ANoCEdApnycjLSuyXV9lChoBkdAnKImAf+0gWgHTegDaAhHQKaBuPn0TUR1fZQoaAZHQJoEgglnh89oB03oA2gIR0CmhRTrE9+xdX2UKGgGR0Ccf+W6bvw3aAdN6ANoCEdApod8oH9m6HV9lChoBkdAnsYdUXHim2gHTegDaAhHQKaHw+N96Tp1fZQoaAZHQJ8xbfDUExJoB03oA2gIR0CmjPJRGc4HdX2UKGgGR0CdE5nEVFhHaAdN6ANoCEdAppA0TL4etHV9lChoBkdAn14zU7Sy+2gHTegDaAhHQKaSPnTy8SR1fZQoaAZHQKCWZ41xbStoB03oA2gIR0Cmkojvd/KAdX2UKGgGR0CdEnqkuYhMaAdN6ANoCEdAppeeC7K7qnV9lChoBkdAnfYlTrE9+2gHTegDaAhHQKaa/F5OafB1fZQoaAZHQJ6+aEnLJS1oB03oA2gIR0CmnTTVUdaMdX2UKGgGR0Cec12ugYgraAdN6ANoCEdApp18IcBEKHV9lChoBkdAn+bDOxB3R2gHTegDaAhHQKaimI5YHPh1fZQoaAZHQKDmSQkHD79oB03oA2gIR0CmpdDaPCEYdX2UKGgGR0CglSD5bhWHaAdN6ANoCEdApqfJlBhQWXV9lChoBkdAoEHvRZ2ZA2gHTegDaAhHQKaoEbQ1JlJ1fZQoaAZHQKBj3Gqgh8poB03oA2gIR0CmrW3zlLezdX2UKGgGR0CgOnGBFuvVaAdN6ANoCEdAprCpjx0+1XV9lChoBkdAoFDGEPDpDGgHTegDaAhHQKaytIxQBPt1fZQoaAZHQKAoe8QqZtxoB03oA2gIR0CmsvcFyJbddX2UKGgGR0ChxCbblA/taAdN6ANoCEdAprfggq3EynV9lChoBkdAodfhxT850mgHTegDaAhHQKa7NIgeRxN1fZQoaAZHQKJAzx/d69loB03oA2gIR0CmvTHYHxBmdX2UKGgGR0ChBbnjp9qlaAdN6ANoCEdApr10cyWRinV9lChoBkdAoPSMUqQRw2gHTegDaAhHQKbCa7uDzy11fZQoaAZHQKF7lnOB19xoB03oA2gIR0CmxbTgl4TsdX2UKGgGR0CgjZhQvYe1aAdN6ANoCEdApse7ZnL7oHV9lChoBkdAoI3KwSrYG2gHTegDaAhHQKbIAEVWS2Z1fZQoaAZHQKBqwPpY9xJoB03oA2gIR0CmzQFz2exwdX2UKGgGR0ChjUKqn3tbaAdN6ANoCEdAptBBZ4fOlnV9lChoBkdAoAh4RTS9d2gHTegDaAhHQKbSZYLb5/N1fZQoaAZHQKAlt+uvECNoB03oA2gIR0Cm0qn+yZ8bdX2UKGgGR0CbzcPFefI0aAdN6ANoCEdAptekf9xZMnV9lChoBkdAnc5ZP69CeGgHTegDaAhHQKba09bor4F1fZQoaAZHQJzDM1qFh5RoB03oA2gIR0Cm3Nu76Hj7dX2UKGgGR0CgQFacZtN0aAdN6ANoCEdApt0gSYgJTnV9lChoBkdAnp4P+bVjJGgHTegDaAhHQKbiAgPmPo51fZQoaAZHQJ6vBFtsN2FoB03oA2gIR0Cm5TPIwM6SdX2UKGgGR0CgWxJLdvbXaAdN6ANoCEdApudB/CqIanV9lChoBkdAoJ478P4EfWgHTegDaAhHQKbnh8O09hZ1fZQoaAZHQJ36o4CIUJxoB03oA2gIR0Cm7HvczqKQdX2UKGgGR0CVh2JTVDrraAdN6ANoCEdApu+5j2BatHV9lChoBkdAoP/F5+pfhWgHTegDaAhHQKbxxAlfJFN1fZQoaAZHQKBHCbtqpLpoB03oA2gIR0Cm8glpGnXNdX2UKGgGR0Cg19kk8ifQaAdN6ANoCEdApvc/Fm4Aj3V9lChoBkdAoJHkj3VTaWgHTegDaAhHQKb6hW5paid1fZQoaAZHQKDGO6JZW7xoB03oA2gIR0Cm/IZwGW2PdX2UKGgGR0ChEP99MK1HaAdN6ANoCEdApvzLNjbzsnV9lChoBkdAoTaea8YhuGgHTegDaAhHQKcBx8YQ8Ol1fZQoaAZHQKCMgLbYbsFoB03oA2gIR0CnBPi7K7qZdX2UKGgGR0Ch32KjzqbCaAdN6ANoCEdApwcBPM0P6XV9lChoBkdAocQV9roGIWgHTegDaAhHQKcHRZPEbYN1fZQoaAZHQKFG7dC3PRloB03oA2gIR0CnDGQmmce9dX2UKGgGR0ChN5hmPHT7aAdN6ANoCEdApw/9Bt1p03V9lChoBkdAnt6Wcz67/WgHTegDaAhHQKcSJa1TisJ1fZQoaAZHQKFO3zI3irFoB03oA2gIR0CnEnGmLtNSdX2UKGgGR0ChAhHeJpFkaAdN6ANoCEdApxeRJ/XoT3V9lChoBkdAoZ1xprULD2gHTegDaAhHQKca8XvYvnN1fZQoaAZHQKGTJWwNb1RoB03oA2gIR0CnHSNDtw71dX2UKGgGR0ChaG6ij+JhaAdN6ANoCEdApx1rFuNxVHV9lChoBkdAoRydQCSzPmgHTegDaAhHQKcijHJ9y951fZQoaAZHQKF8dj9XLeRoB03oA2gIR0CnJcYtQKrrdX2UKGgGR0ChUod/z8P4aAdN6ANoCEdApyfL9n9NvnV9lChoBkdAomZxzxPO6mgHTegDaAhHQKcoEuSOinJ1fZQoaAZHQKH4Ux3V091oB03oA2gIR0CnLQ8X3xnWdX2UKGgGR0CiLk3MINVjaAdN6ANoCEdApzBls1sLv3V9lChoBkdAoLhnT9bX6WgHTegDaAhHQKcyg3Ov+wV1fZQoaAZHQKFEeM1jy4FoB03oA2gIR0CnMsifg75mdX2UKGgGR0Cf7VLNOdoWaAdN6ANoCEdApzfZbILgGnVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d5d25066132a3e3a3d2bf3a9c8929c136f306b6e8fdc317fc6d4b34bd240211
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6a80f5448fe305faded345b565a3d60cf3a285104b7cd4e1c6a90fc8e332da4
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.31 # 138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 1.12.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e2e4f8820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e2e4f88b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e2e4f8940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e2e4f89d0>", "_build": "<function ActorCriticPolicy._build at 0x7f5e2e4f8a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f5e2e4f8af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5e2e4f8b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e2e4f8c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5e2e4f8ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e2e4f8d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e2e4f8dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e2e4f8e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5e2e509740>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682757855502187009, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPeyWz5vd2o/7AlKv5dHlT9s1No/NrqxP/KDDD8MfdS+SkmfvwRbnj7LXiw/Pm5Jv+Ws9r18bak/v4hgv7embL26Vua+YHYovlwUDj+bkaI8hLIXP5cVk7+CXnw/nGK1PpApM78Huzs/3daWPpUwOj/9jpU+2iMZP0aWT76t/Yc+sAqZP04cgj+snNU+7UQGv/okHb+FCJi9W5ocP/eOgL8Dl169G3FvP7ZbIL9EY/u9U0uUvlsyyz7Vgg0/uvhyPEbfJT56Dk6/1mFiP/Do8b2QKTO/B7s7P93Wlj6VMDo/iroaP+srOj/dSdK+e9NHP0COxT+bn6Y/btRbP/4F+r55gbi/e7ACv4MKAj/eH6i/uowpP8Azjz+jHHu/ohLEPgN4ob5hcGi+gP4MP4NqtDzWTp67eH+Jv0caNj9PVzC+kCkzvwe7Oz/d1pY+lTA6PwJEkD+pkhU/BnY6viD2gj887nw/xBOPP2wucz/LBWy/8Gmev7zfxr6pKRO+CCxjv4s3jT/d3Ds/oV0ov62UST8Hvw2/VeN4vuekDT9taeg8gOxMvz7ugL8Zj2c/1u/vvpApM78Huzs/3daWPpUwOj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABr8gY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmZYlvQAAAAB+z/S/AAAAAJUpH70AAAAA4eHcPwAAAABzKqg9AAAAAIMO8T8AAAAAPZ1juwAAAAD+Gfy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7uyUtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJoobb0AAAAAbrzmvwAAAABPcqc8AAAAAIYg2T8AAAAAMFK1PAAAAADZ/uA/AAAAAHJuEj4AAAAArXD7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsV9TYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBsW6m8AAAAANZH5b8AAAAAJizxPQAAAADlJuk/AAAAAGcPrj0AAAAA7AD7PwAAAABmrbu9AAAAACAp8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPGNO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPZcEPAAAAAAL7vO/AAAAAABqAL4AAAAAVJHcPwAAAAAS9rW9AAAAAIao/z8AAAAAzAdOPQAAAABNRuq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKEHoEkjX4GMAWyUTegDjAF0lEdApjBQrQPZqXV9lChoBkdAoUStIGyHEmgHTegDaAhHQKYyZeCTUy51fZQoaAZHQKE4cW8h9stoB03oA2gIR0CmMrQA2hqTdX2UKGgGR0Cg/V/mknCwaAdN6ANoCEdApjgYla8pTnV9lChoBkdAoOM7qfOD8WgHTegDaAhHQKY7ZNNahYh1fZQoaAZHQKEMRs2vStxoB03oA2gIR0CmPXMa0hNedX2UKGgGR0ChvK101ZTyaAdN6ANoCEdApj22A/cFhXV9lChoBkdAoQ7hZOi35WgHTegDaAhHQKZC3SVGCqZ1fZQoaAZHQJ/OCX0Gu9xoB03oA2gIR0CmRgW2gFotdX2UKGgGR0Cg4PvlEJBxaAdN6ANoCEdApkgHjMmnfnV9lChoBkdAoTtbXpW3jWgHTegDaAhHQKZISo6S1Vp1fZQoaAZHQKBuAysS00FoB03oA2gIR0CmTTXjuKGddX2UKGgGR0CgznJCjUNKaAdN6ANoCEdAplBdsLv1DnV9lChoBkdAoJWBYNiH7GgHTegDaAhHQKZSZ974SHx1fZQoaAZHQKEfBsZ5zHVoB03oA2gIR0CmUrC3XqZ/dX2UKGgGR0Cgo9DSw4bTaAdN6ANoCEdAplebI/7iynV9lChoBkdAocUUW/JvHmgHTegDaAhHQKZa/VjqfOF1fZQoaAZHQKG+AdMj/uNoB03oA2gIR0CmXRtHYpUhdX2UKGgGR0ChahYht+CsaAdN6ANoCEdApl1iTINmUXV9lChoBkdAoecA8IRh+mgHTegDaAhHQKZiRdSl3yJ1fZQoaAZHQKG2qf9P1thoB03oA2gIR0CmZXr6LwWndX2UKGgGR0ChNK86mwaBaAdN6ANoCEdApmdxe3QUpXV9lChoBkdAoc9Csr/bTWgHTegDaAhHQKZntI5o4+91fZQoaAZHQKA2AoaUA1hoB03oA2gIR0CmbLCkGiYcdX2UKGgGR0Cd6ua+evpyaAdN6ANoCEdApm/y9ugpSnV9lChoBkdAnSih5Pdl/mgHTegDaAhHQKZx9M/QjUx1fZQoaAZHQJy4Sws5GSZoB03oA2gIR0CmcjZi/fwadX2UKGgGR0CffxcKgIyCaAdN6ANoCEdApnckxREWqXV9lChoBkdAoLsWWrwOOWgHTegDaAhHQKZ6TxkNF0B1fZQoaAZHQKBRkIWP91loB03oA2gIR0CmfFcHv+fidX2UKGgGR0Ca0BySFGoaaAdN6ANoCEdApnycjLSuyXV9lChoBkdAnKImAf+0gWgHTegDaAhHQKaBuPn0TUR1fZQoaAZHQJoEgglnh89oB03oA2gIR0CmhRTrE9+xdX2UKGgGR0Ccf+W6bvw3aAdN6ANoCEdApod8oH9m6HV9lChoBkdAnsYdUXHim2gHTegDaAhHQKaHw+N96Tp1fZQoaAZHQJ8xbfDUExJoB03oA2gIR0CmjPJRGc4HdX2UKGgGR0CdE5nEVFhHaAdN6ANoCEdAppA0TL4etHV9lChoBkdAn14zU7Sy+2gHTegDaAhHQKaSPnTy8SR1fZQoaAZHQKCWZ41xbStoB03oA2gIR0Cmkojvd/KAdX2UKGgGR0CdEnqkuYhMaAdN6ANoCEdAppeeC7K7qnV9lChoBkdAnfYlTrE9+2gHTegDaAhHQKaa/F5OafB1fZQoaAZHQJ6+aEnLJS1oB03oA2gIR0CmnTTVUdaMdX2UKGgGR0Cec12ugYgraAdN6ANoCEdApp18IcBEKHV9lChoBkdAn+bDOxB3R2gHTegDaAhHQKaimI5YHPh1fZQoaAZHQKDmSQkHD79oB03oA2gIR0CmpdDaPCEYdX2UKGgGR0CglSD5bhWHaAdN6ANoCEdApqfJlBhQWXV9lChoBkdAoEHvRZ2ZA2gHTegDaAhHQKaoEbQ1JlJ1fZQoaAZHQKBj3Gqgh8poB03oA2gIR0CmrW3zlLezdX2UKGgGR0CgOnGBFuvVaAdN6ANoCEdAprCpjx0+1XV9lChoBkdAoFDGEPDpDGgHTegDaAhHQKaytIxQBPt1fZQoaAZHQKAoe8QqZtxoB03oA2gIR0CmsvcFyJbddX2UKGgGR0ChxCbblA/taAdN6ANoCEdAprfggq3EynV9lChoBkdAodfhxT850mgHTegDaAhHQKa7NIgeRxN1fZQoaAZHQKJAzx/d69loB03oA2gIR0CmvTHYHxBmdX2UKGgGR0ChBbnjp9qlaAdN6ANoCEdApr10cyWRinV9lChoBkdAoPSMUqQRw2gHTegDaAhHQKbCa7uDzy11fZQoaAZHQKF7lnOB19xoB03oA2gIR0CmxbTgl4TsdX2UKGgGR0CgjZhQvYe1aAdN6ANoCEdApse7ZnL7oHV9lChoBkdAoI3KwSrYG2gHTegDaAhHQKbIAEVWS2Z1fZQoaAZHQKBqwPpY9xJoB03oA2gIR0CmzQFz2exwdX2UKGgGR0ChjUKqn3tbaAdN6ANoCEdAptBBZ4fOlnV9lChoBkdAoAh4RTS9d2gHTegDaAhHQKbSZYLb5/N1fZQoaAZHQKAlt+uvECNoB03oA2gIR0Cm0qn+yZ8bdX2UKGgGR0CbzcPFefI0aAdN6ANoCEdAptekf9xZMnV9lChoBkdAnc5ZP69CeGgHTegDaAhHQKba09bor4F1fZQoaAZHQJzDM1qFh5RoB03oA2gIR0Cm3Nu76Hj7dX2UKGgGR0CgQFacZtN0aAdN6ANoCEdApt0gSYgJTnV9lChoBkdAnp4P+bVjJGgHTegDaAhHQKbiAgPmPo51fZQoaAZHQJ6vBFtsN2FoB03oA2gIR0Cm5TPIwM6SdX2UKGgGR0CgWxJLdvbXaAdN6ANoCEdApudB/CqIanV9lChoBkdAoJ478P4EfWgHTegDaAhHQKbnh8O09hZ1fZQoaAZHQJ36o4CIUJxoB03oA2gIR0Cm7HvczqKQdX2UKGgGR0CVh2JTVDrraAdN6ANoCEdApu+5j2BatHV9lChoBkdAoP/F5+pfhWgHTegDaAhHQKbxxAlfJFN1fZQoaAZHQKBHCbtqpLpoB03oA2gIR0Cm8glpGnXNdX2UKGgGR0Cg19kk8ifQaAdN6ANoCEdApvc/Fm4Aj3V9lChoBkdAoJHkj3VTaWgHTegDaAhHQKb6hW5paid1fZQoaAZHQKDGO6JZW7xoB03oA2gIR0Cm/IZwGW2PdX2UKGgGR0ChEP99MK1HaAdN6ANoCEdApvzLNjbzsnV9lChoBkdAoTaea8YhuGgHTegDaAhHQKcBx8YQ8Ol1fZQoaAZHQKCMgLbYbsFoB03oA2gIR0CnBPi7K7qZdX2UKGgGR0Ch32KjzqbCaAdN6ANoCEdApwcBPM0P6XV9lChoBkdAocQV9roGIWgHTegDaAhHQKcHRZPEbYN1fZQoaAZHQKFG7dC3PRloB03oA2gIR0CnDGQmmce9dX2UKGgGR0ChN5hmPHT7aAdN6ANoCEdApw/9Bt1p03V9lChoBkdAnt6Wcz67/WgHTegDaAhHQKcSJa1TisJ1fZQoaAZHQKFO3zI3irFoB03oA2gIR0CnEnGmLtNSdX2UKGgGR0ChAhHeJpFkaAdN6ANoCEdApxeRJ/XoT3V9lChoBkdAoZ1xprULD2gHTegDaAhHQKca8XvYvnN1fZQoaAZHQKGTJWwNb1RoB03oA2gIR0CnHSNDtw71dX2UKGgGR0ChaG6ij+JhaAdN6ANoCEdApx1rFuNxVHV9lChoBkdAoRydQCSzPmgHTegDaAhHQKcijHJ9y951fZQoaAZHQKF8dj9XLeRoB03oA2gIR0CnJcYtQKrrdX2UKGgGR0ChUod/z8P4aAdN6ANoCEdApyfL9n9NvnV9lChoBkdAomZxzxPO6mgHTegDaAhHQKcoEuSOinJ1fZQoaAZHQKH4Ux3V091oB03oA2gIR0CnLQ8X3xnWdX2UKGgGR0CiLk3MINVjaAdN6ANoCEdApzBls1sLv3V9lChoBkdAoLhnT9bX6WgHTegDaAhHQKcyg3Ov+wV1fZQoaAZHQKFEeM1jy4FoB03oA2gIR0CnMsifg75mdX2UKGgGR0Cf7VLNOdoWaAdN6ANoCEdApzfZbILgGnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.4.0-122-generic-x86_64-with-glibc2.31 # 138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "1.12.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afb20812d0e046e25a53ff4e5f5d0393788d13d32f2b767dd3e06dc65dcf2003
3
+ size 1275658
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2119.2002316410885, "std_reward": 120.38886092692134, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-29T09:29:41.341034"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aed4752455e909e8bb83611502247227204f7e432ff649207309e5870356f384
3
+ size 2163