update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- librispeech_asr
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: whisper-small-en
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: librispeech_asr
|
17 |
+
type: librispeech_asr
|
18 |
+
config: clean
|
19 |
+
split: test
|
20 |
+
args: clean
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 124.51154529307283
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# whisper-small-en
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the librispeech_asr dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 6.7832
|
35 |
+
- Wer: 124.5115
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.0005
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 2
|
59 |
+
- total_train_batch_size: 32
|
60 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_steps: 2
|
63 |
+
- training_steps: 100
|
64 |
+
- mixed_precision_training: Native AMP
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|
|
70 |
+
| 9.6259 | 1.57 | 5 | 10.7408 | 1127.3535 |
|
71 |
+
| 11.5288 | 3.29 | 10 | 9.2534 | 100.0 |
|
72 |
+
| 10.9249 | 4.86 | 15 | 7.8357 | 100.0 |
|
73 |
+
| 7.0442 | 6.57 | 20 | 6.9971 | 595.3819 |
|
74 |
+
| 8.6762 | 8.29 | 25 | 5.6135 | 312.2558 |
|
75 |
+
| 5.4239 | 9.86 | 30 | 5.4885 | 97.1581 |
|
76 |
+
| 4.986 | 11.57 | 35 | 5.2888 | 628.7744 |
|
77 |
+
| 6.708 | 13.29 | 40 | 4.9665 | 277.6199 |
|
78 |
+
| 3.9096 | 14.86 | 45 | 5.0861 | 631.9716 |
|
79 |
+
| 3.2326 | 16.57 | 50 | 5.0090 | 279.7513 |
|
80 |
+
| 3.9691 | 18.29 | 55 | 5.0804 | 133.2149 |
|
81 |
+
| 1.8661 | 19.86 | 60 | 5.4423 | 317.5844 |
|
82 |
+
| 1.1588 | 21.57 | 65 | 5.7955 | 119.5382 |
|
83 |
+
| 1.0355 | 23.29 | 70 | 6.0458 | 190.2309 |
|
84 |
+
| 0.3455 | 24.86 | 75 | 6.3057 | 106.7496 |
|
85 |
+
| 0.142 | 26.57 | 80 | 6.5767 | 209.9467 |
|
86 |
+
| 0.1722 | 28.29 | 85 | 6.5937 | 101.4210 |
|
87 |
+
| 0.0816 | 29.86 | 90 | 6.7679 | 149.7336 |
|
88 |
+
| 0.079 | 31.57 | 95 | 6.8008 | 133.5702 |
|
89 |
+
| 0.1007 | 33.29 | 100 | 6.7832 | 124.5115 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.26.0.dev0
|
95 |
+
- Pytorch 1.12.1+cu113
|
96 |
+
- Datasets 2.7.1
|
97 |
+
- Tokenizers 0.13.2
|