Bagheera Bghira commited on
Commit
442ca71
·
1 Parent(s): 73823fc

otaku v1 beta 1: 7350 steps on niji dataset

Browse files
README.md CHANGED
@@ -1,3 +1,151 @@
1
  ---
2
  license: openrail++
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: openrail++
3
  ---
4
+
5
+ # Terminus XL Gamma (v2 preview)
6
+
7
+ ## Model Details
8
+
9
+ ### Model Description
10
+
11
+ Terminus XL Gamma is a new state-of-the-art latent diffusion model that uses zero-terminal SNR noise schedule and velocity prediction objective at training and inference time.
12
+
13
+ Terminus is based on a similar architecture to SDXL, and has the same layout. It has been trained on fewer steps with very high quality data captions via COCO and Midjourney.
14
+
15
+ This model will not be capable of as many concepts as SDXL, and some subjects will simply look very bad.
16
+
17
+ The objective of this model was to use v-prediction and min-SNR gamma loss to efficiently train a full zero-terminal SNR model on a single A100-80G.
18
+
19
+
20
+ - **Fine-tuned from:** ptx0/terminus-xl-gamma-v1
21
+ - **Developed by:** pseudoterminal X (@bghira)
22
+ - **Funded by:** pseudoterminal X (@bghira)
23
+ - **Model type:** Latent Diffusion
24
+ - **License:** openrail++
25
+ - **Architecture:** SDXL
26
+
27
+ ### Model Sources
28
+
29
+ - **Repository:** https://github.com/bghira/SimpleTuner
30
+
31
+ ## Uses
32
+
33
+ ### Direct Use
34
+
35
+ Terminus XL Gamma can be used for generating high-quality images given text prompts. It should particularly excel at inpainting tasks, where a zero-terminal SNR noise schedule allows it to more effectively retain contrast.
36
+
37
+ The model can be utilized in creative industries such as art, advertising, and entertainment to create visually appealing content.
38
+
39
+ ### Downstream Use
40
+
41
+ Terminus XL Gamma can be fine-tuned for specific tasks such as image super-resolution, style transfer, and more.
42
+
43
+ ### Out-of-Scope Use
44
+
45
+ The model is not designed for tasks outside of image generation. It should not be used to produce harmful content, or deceive others. Please use common sense.
46
+
47
+ ## Bias, Risks, and Limitations
48
+
49
+ The model might exhibit biases present in the training data. The generated images should be carefully reviewed to ensure they meet ethical and societal standards.
50
+
51
+ ### Recommendations
52
+
53
+ Users should be cautious of potential biases in the generated images and thoroughly review them before use.
54
+
55
+ ## Training Details
56
+
57
+ ### Training Data
58
+
59
+ This model's success largely depended on a somewhat small collection of very high quality data samples.
60
+
61
+ * LAION-HD, filtered down to EXIF samples without watermarks. Luminance value of samples capped to 100 (.5).
62
+ * Midjourney 5.2 dataset `ptx0/mj-general` with zero filtration.
63
+
64
+ ### Training Procedure
65
+
66
+ #### Preprocessing
67
+
68
+ Most of the existing process for terminus-xl-gamma-v1 was followed, with the exception of training extensively on cropped images using SDXL's crop coordinates to improve fine details.
69
+
70
+ No images were upsampled during this training session. Images were downsampled using LANCZOS instead of BICUBIC filters to attain higher image fidelity and maintain more image context for the model to learn from.
71
+
72
+ Only high-quality photos were used in this training session, greatly improving the realism qualities.
73
+
74
+ ~770,000 images were used for this training run.
75
+
76
+ #### Training Hyperparameters
77
+
78
+ - **Training regime:** bf16 mixed precision
79
+ - **Learning rate:** \(4 \times 10^{-7}\) to \(8 \times 10^{-7}\), cosine schedule
80
+ - **Epochs:** 60
81
+ - **Batch size:** 24 * 15 = 360
82
+
83
+ #### Speeds, Sizes, Times
84
+
85
+ [More Information Needed]
86
+
87
+ ## Evaluation
88
+
89
+ ### Testing Data, Factors & Metrics
90
+
91
+ [More Information Needed]
92
+
93
+ ### Results
94
+
95
+ [More Information Needed]
96
+
97
+ #### Summary
98
+
99
+ [More Information Needed]
100
+
101
+ ## Environmental Impact
102
+
103
+ - **Hardware Type:** [More Information Needed]
104
+ - **Hours used:** [More Information Needed]
105
+ - **Cloud Provider:** [More Information Needed]
106
+ - **Compute Region:** [More Information Needed]
107
+ - **Carbon Emitted:** [More Information Needed]
108
+
109
+ ## Technical Specifications
110
+
111
+ ### Model Architecture and Objective
112
+
113
+ The model uses an SDXL-compatible latent diffusion architecture with a unique min-SNR augmented velocity objective.
114
+
115
+ ### Compute Infrastructure
116
+
117
+ [More Information Needed]
118
+
119
+ #### Hardware
120
+
121
+ [More Information Needed]
122
+
123
+ #### Software
124
+
125
+ [More Information Needed]
126
+
127
+ ## Citation
128
+
129
+ **BibTeX:**
130
+
131
+ [More Information Needed]
132
+
133
+ **APA:**
134
+
135
+ [More Information Needed]
136
+
137
+ ## Glossary
138
+
139
+ [More Information Needed]
140
+
141
+ ## More Information
142
+
143
+ [More Information Needed]
144
+
145
+ ## Model Card Authors
146
+
147
+ [More Information Needed]
148
+
149
+ ## Model Card Contact
150
+
151
+ [More Information Needed]
model_index.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "StableDiffusionXLPipeline",
3
+ "_diffusers_version": "0.22.0.dev0",
4
+ "_name_or_path": "ptx0/sdxl-base",
5
+ "force_zeros_for_empty_prompt": true,
6
+ "scheduler": [
7
+ "diffusers",
8
+ "EulerDiscreteScheduler"
9
+ ],
10
+ "text_encoder": [
11
+ "transformers",
12
+ "CLIPTextModel"
13
+ ],
14
+ "text_encoder_2": [
15
+ "transformers",
16
+ "CLIPTextModelWithProjection"
17
+ ],
18
+ "tokenizer": [
19
+ "transformers",
20
+ "CLIPTokenizer"
21
+ ],
22
+ "tokenizer_2": [
23
+ "transformers",
24
+ "CLIPTokenizer"
25
+ ],
26
+ "unet": [
27
+ "diffusers",
28
+ "UNet2DConditionModel"
29
+ ],
30
+ "vae": [
31
+ "diffusers",
32
+ "AutoencoderKL"
33
+ ]
34
+ }
scheduler/scheduler_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "EulerDiscreteScheduler",
3
+ "_diffusers_version": "0.24.0.dev0",
4
+ "beta_end": 0.012,
5
+ "beta_schedule": "scaled_linear",
6
+ "beta_start": 0.00085,
7
+ "clip_sample": false,
8
+ "clip_sample_range": 1.0,
9
+ "dynamic_thresholding_ratio": 0.995,
10
+ "interpolation_type": "linear",
11
+ "num_train_timesteps": 1000,
12
+ "prediction_type": "v_prediction",
13
+ "rescale_betas_zero_snr": true,
14
+ "sample_max_value": 1.0,
15
+ "set_alpha_to_one": false,
16
+ "skip_prk_steps": true,
17
+ "steps_offset": 1,
18
+ "thresholding": false,
19
+ "timestep_spacing": "trailing",
20
+ "trained_betas": null,
21
+ "use_karras_sigmas": false
22
+ }
text_encoder/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ptx0/sdxl-base",
3
+ "architectures": [
4
+ "CLIPTextModel"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 0,
8
+ "dropout": 0.0,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "quick_gelu",
11
+ "hidden_size": 768,
12
+ "initializer_factor": 1.0,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 77,
17
+ "model_type": "clip_text_model",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 1,
21
+ "projection_dim": 768,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.33.1",
24
+ "vocab_size": 49408
25
+ }
text_encoder/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03532a1b8bb2f02b16b9b290273caf9c8793a0a268517c104eee30f7d1829120
3
+ size 246144352
text_encoder_2/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ptx0/sdxl-base",
3
+ "architectures": [
4
+ "CLIPTextModelWithProjection"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 0,
8
+ "dropout": 0.0,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_size": 1280,
12
+ "initializer_factor": 1.0,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 5120,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 77,
17
+ "model_type": "clip_text_model",
18
+ "num_attention_heads": 20,
19
+ "num_hidden_layers": 32,
20
+ "pad_token_id": 1,
21
+ "projection_dim": 1280,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.33.1",
24
+ "vocab_size": 49408
25
+ }
text_encoder_2/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4ba596d8c78b5509aafd523f619e13aa129ae1a886a1e92766d7cddd9706f3c
3
+ size 1389382688
tokenizer/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|endoftext|>",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": {
4
+ "__type": "AddedToken",
5
+ "content": "<|startoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "clean_up_tokenization_spaces": true,
12
+ "do_lower_case": true,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "<|endoftext|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "errors": "replace",
22
+ "model_max_length": 77,
23
+ "pad_token": "<|endoftext|>",
24
+ "tokenizer_class": "CLIPTokenizer",
25
+ "unk_token": {
26
+ "__type": "AddedToken",
27
+ "content": "<|endoftext|>",
28
+ "lstrip": false,
29
+ "normalized": true,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_2/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_2/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "!",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer_2/tokenizer_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": {
4
+ "__type": "AddedToken",
5
+ "content": "<|startoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "clean_up_tokenization_spaces": true,
12
+ "do_lower_case": true,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "<|endoftext|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "errors": "replace",
22
+ "model_max_length": 77,
23
+ "pad_token": "!",
24
+ "tokenizer_class": "CLIPTokenizer",
25
+ "unk_token": {
26
+ "__type": "AddedToken",
27
+ "content": "<|endoftext|>",
28
+ "lstrip": false,
29
+ "normalized": true,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer_2/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
unet/config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "UNet2DConditionModel",
3
+ "_diffusers_version": "0.22.0.dev0",
4
+ "_name_or_path": "/notebooks/datasets/models/checkpoint-17400",
5
+ "act_fn": "silu",
6
+ "addition_embed_type": "text_time",
7
+ "addition_embed_type_num_heads": 64,
8
+ "addition_time_embed_dim": 256,
9
+ "attention_head_dim": [
10
+ 5,
11
+ 10,
12
+ 20
13
+ ],
14
+ "attention_type": "default",
15
+ "block_out_channels": [
16
+ 320,
17
+ 640,
18
+ 1280
19
+ ],
20
+ "center_input_sample": false,
21
+ "class_embed_type": null,
22
+ "class_embeddings_concat": false,
23
+ "conv_in_kernel": 3,
24
+ "conv_out_kernel": 3,
25
+ "cross_attention_dim": 2048,
26
+ "cross_attention_norm": null,
27
+ "down_block_types": [
28
+ "DownBlock2D",
29
+ "CrossAttnDownBlock2D",
30
+ "CrossAttnDownBlock2D"
31
+ ],
32
+ "downsample_padding": 1,
33
+ "dropout": 0.0,
34
+ "dual_cross_attention": false,
35
+ "encoder_hid_dim": null,
36
+ "encoder_hid_dim_type": null,
37
+ "flip_sin_to_cos": true,
38
+ "freq_shift": 0,
39
+ "in_channels": 4,
40
+ "layers_per_block": 2,
41
+ "mid_block_only_cross_attention": null,
42
+ "mid_block_scale_factor": 1,
43
+ "mid_block_type": "UNetMidBlock2DCrossAttn",
44
+ "norm_eps": 1e-05,
45
+ "norm_num_groups": 32,
46
+ "num_attention_heads": null,
47
+ "num_class_embeds": null,
48
+ "only_cross_attention": false,
49
+ "out_channels": 4,
50
+ "projection_class_embeddings_input_dim": 2816,
51
+ "resnet_out_scale_factor": 1.0,
52
+ "resnet_skip_time_act": false,
53
+ "resnet_time_scale_shift": "default",
54
+ "sample_size": 128,
55
+ "time_cond_proj_dim": null,
56
+ "time_embedding_act_fn": null,
57
+ "time_embedding_dim": null,
58
+ "time_embedding_type": "positional",
59
+ "timestep_post_act": null,
60
+ "transformer_layers_per_block": [
61
+ 1,
62
+ 2,
63
+ 10
64
+ ],
65
+ "up_block_types": [
66
+ "CrossAttnUpBlock2D",
67
+ "CrossAttnUpBlock2D",
68
+ "UpBlock2D"
69
+ ],
70
+ "upcast_attention": null,
71
+ "use_linear_projection": true
72
+ }
unet/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dce5cc6e87167f8a08381b5465081cff9bbfb9c8014ed4f3647dc61fb2d76058
3
+ size 10270077736
vae/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "AutoencoderKL",
3
+ "_diffusers_version": "0.22.0.dev0",
4
+ "_name_or_path": "madebyollin/sdxl-vae-fp16-fix",
5
+ "act_fn": "silu",
6
+ "block_out_channels": [
7
+ 128,
8
+ 256,
9
+ 512,
10
+ 512
11
+ ],
12
+ "down_block_types": [
13
+ "DownEncoderBlock2D",
14
+ "DownEncoderBlock2D",
15
+ "DownEncoderBlock2D",
16
+ "DownEncoderBlock2D"
17
+ ],
18
+ "force_upcast": false,
19
+ "in_channels": 3,
20
+ "latent_channels": 4,
21
+ "layers_per_block": 2,
22
+ "norm_num_groups": 32,
23
+ "out_channels": 3,
24
+ "sample_size": 512,
25
+ "scaling_factor": 0.13025,
26
+ "up_block_types": [
27
+ "UpDecoderBlock2D",
28
+ "UpDecoderBlock2D",
29
+ "UpDecoderBlock2D",
30
+ "UpDecoderBlock2D"
31
+ ]
32
+ }
vae/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39a9822aaa359fe37ca5d3cff8a06b9505f29a018b2331d126b36472e77665a6
3
+ size 167335590