beyonddata commited on
Commit
56bad48
1 Parent(s): ee7f9ec

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-base
3
+ datasets: []
4
+ language:
5
+ - vi
6
+ - en
7
+ library_name: sentence-transformers
8
+ license: apache-2.0
9
+ metrics:
10
+ - cosine_accuracy@1
11
+ - cosine_accuracy@3
12
+ - cosine_accuracy@5
13
+ - cosine_accuracy@10
14
+ - cosine_precision@1
15
+ - cosine_precision@3
16
+ - cosine_precision@5
17
+ - cosine_precision@10
18
+ - cosine_recall@1
19
+ - cosine_recall@3
20
+ - cosine_recall@5
21
+ - cosine_recall@10
22
+ - cosine_ndcg@10
23
+ - cosine_mrr@10
24
+ - cosine_map@100
25
+ pipeline_tag: sentence-similarity
26
+ tags:
27
+ - sentence-transformers
28
+ - sentence-similarity
29
+ - feature-extraction
30
+ - generated_from_trainer
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: Bóng đá có lợi ích gì cho sức khỏe?
35
+ sentences:
36
+ - Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền.
37
+ - Bóng đá là môn thể thao phổ biến nhất thế giới.
38
+ - Bóng đá có thể giúp bạn kết nối với nhiều người hơn.
39
+
40
+ model-index:
41
+ - name: Halong Embedding
42
+ results:
43
+ - task:
44
+ type: information-retrieval
45
+ name: Information Retrieval
46
+ dataset:
47
+ name: dim 768
48
+ type: dim_768
49
+ metrics:
50
+ - type: cosine_accuracy@1
51
+ value: 0.8294209702660407
52
+ name: Cosine Accuracy@1
53
+ - type: cosine_accuracy@3
54
+ value: 0.9233176838810642
55
+ name: Cosine Accuracy@3
56
+ - type: cosine_accuracy@5
57
+ value: 0.9436619718309859
58
+ name: Cosine Accuracy@5
59
+ - type: cosine_accuracy@10
60
+ value: 0.9687010954616588
61
+ name: Cosine Accuracy@10
62
+ - type: cosine_precision@1
63
+ value: 0.8294209702660407
64
+ name: Cosine Precision@1
65
+ - type: cosine_precision@3
66
+ value: 0.3145539906103286
67
+ name: Cosine Precision@3
68
+ - type: cosine_precision@5
69
+ value: 0.1931142410015649
70
+ name: Cosine Precision@5
71
+ - type: cosine_precision@10
72
+ value: 0.09906103286384975
73
+ name: Cosine Precision@10
74
+ - type: cosine_recall@1
75
+ value: 0.8145539906103286
76
+ name: Cosine Recall@1
77
+ - type: cosine_recall@3
78
+ value: 0.9178403755868545
79
+ name: Cosine Recall@3
80
+ - type: cosine_recall@5
81
+ value: 0.9389671361502347
82
+ name: Cosine Recall@5
83
+ - type: cosine_recall@10
84
+ value: 0.9640062597809077
85
+ name: Cosine Recall@10
86
+ - type: cosine_ndcg@10
87
+ value: 0.8976041381292648
88
+ name: Cosine Ndcg@10
89
+ - type: cosine_mrr@10
90
+ value: 0.879893558884169
91
+ name: Cosine Mrr@10
92
+ - type: cosine_map@100
93
+ value: 0.8763179130484675
94
+ name: Cosine Map@100
95
+
96
+ ---
97
+
98
+ # Halong Embedding
99
+
100
+ Halong Embedding is a Vietnamese text embedding focused on RAG and production efficiency:
101
+ - 📚 Trained on a in house dataset consist of approximately 100,000 examples of question and related documents
102
+ - 🪆 Trained with a Matryoshka loss, allowing you to truncate embeddings with minimal performance loss: smaller embeddings are faster to compare.
103
+
104
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
105
+
106
+ ## Model Details
107
+
108
+ ### Model Description
109
+ - **Model Type:** Sentence Transformer
110
+ - **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) <!-- at revision d13f1b27baf31030b7fd040960d60d909913633f -->
111
+ - **Maximum Sequence Length:** 512 tokens
112
+ - **Output Dimensionality:** 768 tokens
113
+ - **Similarity Function:** Cosine Similarity
114
+ <!-- - **Training Dataset:** Unknown -->
115
+ - **Language:** vi-focused, multilingual
116
+ - **License:** apache-2.0
117
+
118
+ ### Model Sources
119
+
120
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
121
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
122
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
123
+
124
+ ### Full Model Architecture
125
+
126
+ ```
127
+ SentenceTransformer(
128
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
129
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
130
+ (2): Normalize()
131
+ )
132
+ ```
133
+
134
+ ## Usage
135
+
136
+ ### Direct Usage (Sentence Transformers)
137
+
138
+ First install the Sentence Transformers library:
139
+
140
+ ```bash
141
+ pip install -U sentence-transformers
142
+ ```
143
+
144
+ Then you can load this model and run inference.
145
+ ```python
146
+ from sentence_transformers import SentenceTransformer
147
+ import torch
148
+
149
+ # Download from the 🤗 Hub
150
+ model = SentenceTransformer("hiieu/halong_embedding")
151
+
152
+ # Define query and documents
153
+ query = "Bóng đá có lợi ích gì cho sức khỏe?"
154
+ docs = [
155
+ "Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền.",
156
+ "Bóng đá là môn thể thao phổ biến nhất thế giới.",
157
+ "Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý.",
158
+ "Bóng đá có thể giúp bạn kết nối với nhiều người hơn.",
159
+ "Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí."
160
+ ]
161
+
162
+ # Encode query and documents
163
+ query_embedding = model.encode([query])
164
+ doc_embeddings = model.encode(docs)
165
+ similarities = model.similarity(query_embedding, doc_embeddings).flatten()
166
+
167
+ # Sort documents by cosine similarity
168
+ sorted_indices = torch.argsort(similarities, descending=True)
169
+ sorted_docs = [docs[idx] for idx in sorted_indices]
170
+ sorted_scores = [similarities[idx].item() for idx in sorted_indices]
171
+
172
+ # Print sorted documents with their cosine scores
173
+ for doc, score in zip(sorted_docs, sorted_scores):
174
+ print(f"Document: {doc} - Cosine Similarity: {score:.4f}")
175
+
176
+ # Document: Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền. - Cosine Similarity: 0.7318
177
+ # Document: Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý. - Cosine Similarity: 0.6623
178
+ # Document: Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí. - Cosine Similarity: 0.6102
179
+ # Document: Bóng đá có thể giúp bạn kết nối với nhiều người hơn. - Cosine Similarity: 0.4988
180
+ # Document: Bóng đá là môn thể thao phổ biến nhất thế giới. - Cosine Similarity: 0.4828
181
+ ```
182
+
183
+ ### Matryoshka Embeddings Inference
184
+ ```python
185
+ from sentence_transformers import SentenceTransformer
186
+ import torch.nn.functional as F
187
+ import torch
188
+
189
+ matryoshka_dim = 64
190
+ model = SentenceTransformer(
191
+ "hiieu/halong_embedding",
192
+ truncate_dim=matryoshka_dim,
193
+ )
194
+
195
+ # Define query and documents
196
+ query = "Bóng đá có lợi ích gì cho sức khỏe?"
197
+ docs = [
198
+ "Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền.",
199
+ "Bóng đá là môn thể thao phổ biến nhất thế giới.",
200
+ "Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý.",
201
+ "Bóng đá có thể giúp bạn kết nối với nhiều người hơn.",
202
+ "Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí."
203
+ ]
204
+
205
+ # Encode query and documents
206
+ query_embedding = model.encode([query])
207
+ doc_embeddings = model.encode(docs)
208
+ similarities = model.similarity(query_embedding, doc_embeddings).flatten()
209
+
210
+ # Sort documents by cosine similarity
211
+ sorted_indices = torch.argsort(similarities, descending=True)
212
+ sorted_docs = [docs[idx] for idx in sorted_indices]
213
+ sorted_scores = [similarities[idx].item() for idx in sorted_indices]
214
+
215
+ # Print sorted documents with their cosine scores
216
+ for doc, score in zip(sorted_docs, sorted_scores):
217
+ print(f"Document: {doc} - Cosine Similarity: {score:.4f}")
218
+
219
+ # Document: Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền. - Cosine Similarity: 0.8045
220
+ # Document: Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý. - Cosine Similarity: 0.7676
221
+ # Document: Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí. - Cosine Similarity: 0.6758
222
+ # Document: Bóng đá có thể giúp bạn kết nối với nhiều người hơn. - Cosine Similarity: 0.5931
223
+ # Document: Bóng đá là môn thể thao phổ biến nhất thế giới. - Cosine Similarity: 0.5105
224
+ ```
225
+ <!--
226
+ ### Direct Usage (Transformers)
227
+
228
+ <details><summary>Click to see the direct usage in Transformers</summary>
229
+
230
+ </details>
231
+ -->
232
+
233
+ <!--
234
+ ### Downstream Usage (Sentence Transformers)
235
+
236
+ You can finetune this model on your own dataset.
237
+
238
+ <details><summary>Click to expand</summary>
239
+
240
+ </details>
241
+ -->
242
+
243
+ <!--
244
+ ### Out-of-Scope Use
245
+
246
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
247
+ -->
248
+
249
+ ## Evaluation
250
+
251
+ ### Metrics
252
+
253
+ #### Information Retrieval
254
+ * Dataset: [Zalo legal retrieval dataet](https://huggingface.co/datasets/hiieu/legal_eval_label)
255
+ * *note*: We sampled 20% of the Zalo Legal train dataset for fast testing; our model did not train on this dataset.
256
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
257
+
258
+ | Model | Accuracy@1 | Accuracy@3 | Accuracy@5 | Accuracy@10 | Precision@1 | Precision@3 | Precision@5 | Precision@10 | Recall@1 | Recall@3 | Recall@5 | Recall@10 | NDCG@10 | MRR@10 | MAP@100 |
259
+ |----------------------|------------|------------|------------|-------------|-------------|--------------|--------------|---------------|-----------|-----------|-----------|------------|---------|--------|---------|
260
+ |
261
+ vietnamese-bi-encoder | 0.8169 | 0.9108 | 0.9437 | 0.9640 | 0.8169 | 0.3099 | 0.1931 | 0.0987 | 0.8020 | 0.9045 | 0.9390 | 0.9601 | 0.8882 | 0.8685 | 0.8652 |
262
+ | sup-SimCSE-VietNamese-phobert-base | 0.5540 | 0.7308 | 0.7981 | 0.8748 | 0.5540 | 0.2473 | 0.1621 | 0.0892 | 0.5446 | 0.7246 | 0.7903 | 0.8693 | 0.7068 | 0.6587 | 0.6592 |
263
+ | halong_embedding (768) | 0.8294 | 0.9233 | 0.9437 | 0.9687 | 0.8294 | 0.3146 | 0.1931 | 0.0991 | 0.8146 | 0.9178 | 0.9390 | 0.9640 | 0.8976 | 0.8799 | 0.8763 |
264
+ | halong_embedding (512) | 0.8138 | 0.9233 | 0.9390 | 0.9703 | 0.8138 | 0.3146 | 0.1922 | 0.0992 | 0.7989 | 0.9178 | 0.9343 | 0.9656 | 0.8917 | 0.8715 | 0.8678 |
265
+ | halong_embedding (256) | 0.7934 | 0.8967 | 0.9280 | 0.9593 | 0.7934 | 0.3062 | 0.1900 | 0.0981 | 0.7786 | 0.8920 | 0.9233 | 0.9546 | 0.8743 | 0.8520 | 0.8489 |
266
+ | halong_embedding (128) | 0.7840 | 0.8951 | 0.9264 | 0.9515 | 0.7840 | 0.3046 | 0.1894 | 0.0975 | 0.7707 | 0.8889 | 0.9210 | 0.9476 | 0.8669 | 0.8439 | 0.8412 |
267
+ | halong_embedding (64) | 0.6980 | 0.8435 | 0.8920 | 0.9358 | 0.6980 | 0.2864 | 0.1815 | 0.0958 | 0.6854 | 0.8365 | 0.8842 | 0.9311 | 0.8145 | 0.7805 | 0.7775 |
268
+
269
+
270
+ <!--
271
+ ## Bias, Risks and Limitations
272
+
273
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
274
+ -->
275
+
276
+ <!--
277
+ ### Recommendations
278
+
279
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
280
+ -->
281
+
282
+
283
+ ## Citation
284
+
285
+ You can cite our work as below:
286
+
287
+ ```Plaintext
288
+ @misc{HalongEmbedding,
289
+ title={HalongEmbedding: A Vietnamese Text Embedding},
290
+ author={Ngo Hieu},
291
+ year={2024},
292
+ publisher={Huggingface},
293
+ }
294
+ ```
295
+
296
+
297
+ ### BibTeX
298
+
299
+ #### Sentence Transformers
300
+ ```bibtex
301
+ @inproceedings{reimers-2019-sentence-bert,
302
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
303
+ author = "Reimers, Nils and Gurevych, Iryna",
304
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
305
+ month = "11",
306
+ year = "2019",
307
+ publisher = "Association for Computational Linguistics",
308
+ url = "https://arxiv.org/abs/1908.10084",
309
+ }
310
+ ```
311
+
312
+ #### MatryoshkaLoss
313
+ ```bibtex
314
+ @misc{kusupati2024matryoshka,
315
+ title={Matryoshka Representation Learning},
316
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
317
+ year={2024},
318
+ eprint={2205.13147},
319
+ archivePrefix={arXiv},
320
+ primaryClass={cs.LG}
321
+ }
322
+ ```
323
+
324
+ #### MultipleNegativesRankingLoss
325
+ ```bibtex
326
+ @misc{henderson2017efficient,
327
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
328
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
329
+ year={2017},
330
+ eprint={1705.00652},
331
+ archivePrefix={arXiv},
332
+ primaryClass={cs.CL}
333
+ }
334
+ ```
335
+
336
+ <!--
337
+ ## Glossary
338
+
339
+ *Clearly define terms in order to be accessible across audiences.*
340
+ -->
341
+
342
+ <!--
343
+ ## Model Card Authors
344
+
345
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
346
+ -->
347
+
348
+ <!--
349
+ ## Model Card Contact
350
+
351
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
352
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "hiieu/halong_embedding",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.45.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.3.1+cpu"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fd083778d8b1f54d7ad106d1e279b5e0f6f2f9f71ae095cf91107b6e54131ab
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }