besa2001 commited on
Commit
3ecc0ba
1 Parent(s): f36490e

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.58 +/- 0.20
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eee09c8fd46626061a0b906c17b30a156789d91532231f3ec2bc4d3911a0b46d
3
+ size 108011
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9849c750d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f9849c72480>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676885711420138260,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHJvVPiZ4jDzfwAc/HJvVPiZ4jDzfwAc/HJvVPiZ4jDzfwAc/HJvVPiZ4jDzfwAc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAclpPP9jl2r89kL+/uFqMPjbSDD50Pv08o1h3v0HUcD+fRrY/b+kuPwcMxL4dnNs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAcm9U+JniMPN/ABz8orC47u4dbOu33n7scm9U+JniMPN/ABz8orC47u4dbOu33n7scm9U+JniMPN/ABz8orC47u4dbOu33n7scm9U+JniMPN/ABz8orC47u4dbOu33n7uUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.41719902 0.01714713 0.5302867 ]\n [0.41719902 0.01714713 0.5302867 ]\n [0.41719902 0.01714713 0.5302867 ]\n [0.41719902 0.01714713 0.5302867 ]]",
60
+ "desired_goal": "[[ 0.80997384 -1.7101393 -1.4965893 ]\n [ 0.27412963 0.13752064 0.03091357]\n [-0.96619624 0.94073874 1.4240302 ]\n [ 0.6832494 -0.38290426 1.7157017 ]]",
61
+ "observation": "[[ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]\n [ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]\n [ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]\n [ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUgIsOypl3j1mqzY+k/UUPhEByj0ldRw+yVWAvQGSuT1R1m4+hfDtu2jnab1bWyI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.00262465 0.10859139 0.17838821]\n [ 0.14546804 0.09863485 0.15279062]\n [-0.06266362 0.09061051 0.23323943]\n [-0.00726134 -0.05710545 0.0396379 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIC0EOSphp5r+UhpRSlIwBbJRLMowBdJRHQKn1hGtp22Z1fZQoaAZoCWgPQwgF+dnIdZP1v5SGlFKUaBVLMmgWR0Cp9Ua+evpydX2UKGgGaAloD0MII6MDkrAv9L+UhpRSlGgVSzJoFkdAqfUGhTOxB3V9lChoBmgJaA9DCDCeQUP/BPW/lIaUUpRoFUsyaBZHQKn0yMVDa5B1fZQoaAZoCWgPQwh9BP7w81/3v5SGlFKUaBVLMmgWR0Cp9sBFEy+IdX2UKGgGaAloD0MITwKbc/CM8b+UhpRSlGgVSzJoFkdAqfaCSkj5bnV9lChoBmgJaA9DCGqJldHIZ/O/lIaUUpRoFUsyaBZHQKn2QhIOH311fZQoaAZoCWgPQwj7PhwkRHn0v5SGlFKUaBVLMmgWR0Cp9gSDh99ddX2UKGgGaAloD0MI46dxb35D6L+UhpRSlGgVSzJoFkdAqffwxnFo+XV9lChoBmgJaA9DCB6oUx7dCOK/lIaUUpRoFUsyaBZHQKn3sr/82rJ1fZQoaAZoCWgPQwif6Lrwg/Psv5SGlFKUaBVLMmgWR0Cp93LRSgoPdX2UKGgGaAloD0MIPStpxTdU+b+UhpRSlGgVSzJoFkdAqfc1OmBOHnV9lChoBmgJaA9DCPZ+ox03/Ou/lIaUUpRoFUsyaBZHQKn5FE7W/ah1fZQoaAZoCWgPQwiPVrWko5ztv5SGlFKUaBVLMmgWR0Cp+NdGZuyedX2UKGgGaAloD0MIaAOwARHi9L+UhpRSlGgVSzJoFkdAqfiXK8tf5XV9lChoBmgJaA9DCMSY9PdS+Oy/lIaUUpRoFUsyaBZHQKn4WZLqUvB1fZQoaAZoCWgPQwjirfNvlz31v5SGlFKUaBVLMmgWR0Cp+urcj7hvdX2UKGgGaAloD0MIN8KiIk6n9b+UhpRSlGgVSzJoFkdAqfqtrGipN3V9lChoBmgJaA9DCLiumBHenva/lIaUUpRoFUsyaBZHQKn6bmQKa5R1fZQoaAZoCWgPQwgp0CfyJGnmv5SGlFKUaBVLMmgWR0Cp+jGLtNSJdX2UKGgGaAloD0MIIhgHl475+b+UhpRSlGgVSzJoFkdAqfzcuUUwjHV9lChoBmgJaA9DCCqMLQQ5qO2/lIaUUpRoFUsyaBZHQKn8n6Tnq3V1fZQoaAZoCWgPQwg9DoP5K6T5v5SGlFKUaBVLMmgWR0Cp/GBOpKjBdX2UKGgGaAloD0MINe1imune87+UhpRSlGgVSzJoFkdAqfwjuSfUWnV9lChoBmgJaA9DCK2+uipQi/W/lIaUUpRoFUsyaBZHQKn+8qvNeMR1fZQoaAZoCWgPQwjBOLh0zLnzv5SGlFKUaBVLMmgWR0Cp/rWKl54XdX2UKGgGaAloD0MI8fPfg9cu5r+UhpRSlGgVSzJoFkdAqf52fZmI03V9lChoBmgJaA9DCN5UpMLYQuy/lIaUUpRoFUsyaBZHQKn+Oe7tiQV1fZQoaAZoCWgPQwjzOXe7Xhrlv5SGlFKUaBVLMmgWR0CqATqjrRjSdX2UKGgGaAloD0MIFJUNayqL6L+UhpRSlGgVSzJoFkdAqgD/ECNjsnV9lChoBmgJaA9DCP95GjBIeue/lIaUUpRoFUsyaBZHQKoAv/ViF0x1fZQoaAZoCWgPQwiafR6jPPPcv5SGlFKUaBVLMmgWR0CqAIN5MURGdX2UKGgGaAloD0MIjPSidr9K8L+UhpRSlGgVSzJoFkdAqgM3azu4PXV9lChoBmgJaA9DCL5qZcIvdeK/lIaUUpRoFUsyaBZHQKoC+lSCOFR1fZQoaAZoCWgPQwhpxqLp7GTSv5SGlFKUaBVLMmgWR0CqArsotthvdX2UKGgGaAloD0MIW11OCYhJ67+UhpRSlGgVSzJoFkdAqgJ+ilBQenV9lChoBmgJaA9DCAKDpE+rqPC/lIaUUpRoFUsyaBZHQKoE7Eit7rt1fZQoaAZoCWgPQwhNo8nFGFjyv5SGlFKUaBVLMmgWR0CqBK5eqrBCdX2UKGgGaAloD0MINuSfGcQH4r+UhpRSlGgVSzJoFkdAqgRuSGJvYXV9lChoBmgJaA9DCK+WOzPBcOS/lIaUUpRoFUsyaBZHQKoEMLsKLKp1fZQoaAZoCWgPQwjggJauYFvwv5SGlFKUaBVLMmgWR0CqBh6lUIcBdX2UKGgGaAloD0MI1XYTfNP05b+UhpRSlGgVSzJoFkdAqgXgtthuwXV9lChoBmgJaA9DCOM2GsBbIO+/lIaUUpRoFUsyaBZHQKoFoMDwH7h1fZQoaAZoCWgPQwg6JLVQMrnkv5SGlFKUaBVLMmgWR0CqBWMw1zhhdX2UKGgGaAloD0MIYwtBDkqY97+UhpRSlGgVSzJoFkdAqgdYEEC/5HV9lChoBmgJaA9DCH6nyYy3Fe6/lIaUUpRoFUsyaBZHQKoHGhvBJqZ1fZQoaAZoCWgPQwgHtkqwONzxv5SGlFKUaBVLMmgWR0CqBtoJZ4fPdX2UKGgGaAloD0MIEM6njlVK2b+UhpRSlGgVSzJoFkdAqgacdHUc43V9lChoBmgJaA9DCDvFqkGYG/S/lIaUUpRoFUsyaBZHQKoIqvfTCtR1fZQoaAZoCWgPQwi+oIUEjO7wv5SGlFKUaBVLMmgWR0CqCG0VSGahdX2UKGgGaAloD0MIzOuIQzYQ8L+UhpRSlGgVSzJoFkdAqggtFH8TBnV9lChoBmgJaA9DCC9SKAtf3+e/lIaUUpRoFUsyaBZHQKoH73V09yN1fZQoaAZoCWgPQwj2mh4UlKLwv5SGlFKUaBVLMmgWR0CqCdt3GGVSdX2UKGgGaAloD0MIZK93f7xX5r+UhpRSlGgVSzJoFkdAqgmdgWrOq3V9lChoBmgJaA9DCM8vStBfaPO/lIaUUpRoFUsyaBZHQKoJXXDm8ul1fZQoaAZoCWgPQwgXKCmwAKbZv5SGlFKUaBVLMmgWR0CqCR/tx+8XdX2UKGgGaAloD0MIpYY2ABuQ8b+UhpRSlGgVSzJoFkdAqgsMfgaWHHV9lChoBmgJaA9DCDy/KEF/ofG/lIaUUpRoFUsyaBZHQKoKznf2saN1fZQoaAZoCWgPQwh06spneR7wv5SGlFKUaBVLMmgWR0CqCo55Z8rqdX2UKGgGaAloD0MIuk24V+at7L+UhpRSlGgVSzJoFkdAqgpQ6fapP3V9lChoBmgJaA9DCI+pu7ILhu6/lIaUUpRoFUsyaBZHQKoMSRBeHBV1fZQoaAZoCWgPQwi9xFimXyLqv5SGlFKUaBVLMmgWR0CqDAsVUModdX2UKGgGaAloD0MI+fVDbLDw7L+UhpRSlGgVSzJoFkdAqgvLGza9K3V9lChoBmgJaA9DCHe688Rzdvi/lIaUUpRoFUsyaBZHQKoLjZyuIRB1fZQoaAZoCWgPQwi858ByhAzov5SGlFKUaBVLMmgWR0CqDXGIj4YadX2UKGgGaAloD0MIRUYHJGEf87+UhpRSlGgVSzJoFkdAqg0zowEhaHV9lChoBmgJaA9DCEbPLXQlgua/lIaUUpRoFUsyaBZHQKoM87hegL91fZQoaAZoCWgPQwht/fSfNT/ev5SGlFKUaBVLMmgWR0CqDLZAyEcsdX2UKGgGaAloD0MI0o4bfjdd77+UhpRSlGgVSzJoFkdAqg6dbor4FnV9lChoBmgJaA9DCBb8NsR4DfK/lIaUUpRoFUsyaBZHQKoOX3j+7191fZQoaAZoCWgPQwikG2FRESfov5SGlFKUaBVLMmgWR0CqDh9h7VridX2UKGgGaAloD0MIR3GOOjqu27+UhpRSlGgVSzJoFkdAqg3h1mrbQHV9lChoBmgJaA9DCOnWa3pQUOG/lIaUUpRoFUsyaBZHQKoPycLBsRB1fZQoaAZoCWgPQwid2a7QB4v2v5SGlFKUaBVLMmgWR0CqD4vN/vv0dX2UKGgGaAloD0MIfuGVJM9197+UhpRSlGgVSzJoFkdAqg9LvE0iyXV9lChoBmgJaA9DCA05tp4hnPi/lIaUUpRoFUsyaBZHQKoPDyDIzWR1fZQoaAZoCWgPQwj0/GmjOp3zv5SGlFKUaBVLMmgWR0CqEPthE0BPdX2UKGgGaAloD0MIGJXUCWii9r+UhpRSlGgVSzJoFkdAqhC9c4YJmnV9lChoBmgJaA9DCJ62RgTjIPi/lIaUUpRoFUsyaBZHQKoQfXg9/z91fZQoaAZoCWgPQwgDXmbYKKv7v5SGlFKUaBVLMmgWR0CqED/y5I6KdX2UKGgGaAloD0MIp804DVEF67+UhpRSlGgVSzJoFkdAqhIsKXv6THV9lChoBmgJaA9DCIQpyqXxC+G/lIaUUpRoFUsyaBZHQKoR7jXFtKt1fZQoaAZoCWgPQwjAWrVrQlrhv5SGlFKUaBVLMmgWR0CqEa40EX+EdX2UKGgGaAloD0MI6+HLRBHS9L+UhpRSlGgVSzJoFkdAqhFwmVqveXV9lChoBmgJaA9DCJ4lyAiocOC/lIaUUpRoFUsyaBZHQKoTZFVktmN1fZQoaAZoCWgPQwim8naE08L0v5SGlFKUaBVLMmgWR0CqEyZof0VadX2UKGgGaAloD0MIx5xn7Et2+b+UhpRSlGgVSzJoFkdAqhLmX5WRzXV9lChoBmgJaA9DCKlKW1zjM+q/lIaUUpRoFUsyaBZHQKoSqNBnjAB1fZQoaAZoCWgPQwiyuP/IdOjyv5SGlFKUaBVLMmgWR0CqFMHSnccmdX2UKGgGaAloD0MI1IIXfQVp27+UhpRSlGgVSzJoFkdAqhSEbo8p1HV9lChoBmgJaA9DCFOUS+MXXvK/lIaUUpRoFUsyaBZHQKoURPZZjhF1fZQoaAZoCWgPQwjaIJOMnIXzv5SGlFKUaBVLMmgWR0CqFAevpyIYdX2UKGgGaAloD0MIk2+2uTG99r+UhpRSlGgVSzJoFkdAqhYc+C9RJnV9lChoBmgJaA9DCNdR1QRR9+6/lIaUUpRoFUsyaBZHQKoV3ySV4X51fZQoaAZoCWgPQwh6VPzfEZX4v5SGlFKUaBVLMmgWR0CqFZ8+RoysdX2UKGgGaAloD0MIiGnf3F89yr+UhpRSlGgVSzJoFkdAqhVhzvJA+3V9lChoBmgJaA9DCJavy/Cfbty/lIaUUpRoFUsyaBZHQKoXXreIl+p1fZQoaAZoCWgPQwi8AtGTMinwv5SGlFKUaBVLMmgWR0CqFyDZL7GedX2UKGgGaAloD0MI0A1N2emH6L+UhpRSlGgVSzJoFkdAqhbgwyqMnHV9lChoBmgJaA9DCPOtD+uN2uy/lIaUUpRoFUsyaBZHQKoWo1Nxlxx1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:866325036050dffbf4af6858ed107edcb5a68ba5876cd043e3d3968ce4a8e472
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c9c09db6afa962741e72b6f1375aa7e01f4d6a6aebe96679fffd34b9de48795
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9849c750d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9849c72480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676885711420138260, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHJvVPiZ4jDzfwAc/HJvVPiZ4jDzfwAc/HJvVPiZ4jDzfwAc/HJvVPiZ4jDzfwAc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAclpPP9jl2r89kL+/uFqMPjbSDD50Pv08o1h3v0HUcD+fRrY/b+kuPwcMxL4dnNs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAcm9U+JniMPN/ABz8orC47u4dbOu33n7scm9U+JniMPN/ABz8orC47u4dbOu33n7scm9U+JniMPN/ABz8orC47u4dbOu33n7scm9U+JniMPN/ABz8orC47u4dbOu33n7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41719902 0.01714713 0.5302867 ]\n [0.41719902 0.01714713 0.5302867 ]\n [0.41719902 0.01714713 0.5302867 ]\n [0.41719902 0.01714713 0.5302867 ]]", "desired_goal": "[[ 0.80997384 -1.7101393 -1.4965893 ]\n [ 0.27412963 0.13752064 0.03091357]\n [-0.96619624 0.94073874 1.4240302 ]\n [ 0.6832494 -0.38290426 1.7157017 ]]", "observation": "[[ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]\n [ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]\n [ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]\n [ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUgIsOypl3j1mqzY+k/UUPhEByj0ldRw+yVWAvQGSuT1R1m4+hfDtu2jnab1bWyI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00262465 0.10859139 0.17838821]\n [ 0.14546804 0.09863485 0.15279062]\n [-0.06266362 0.09061051 0.23323943]\n [-0.00726134 -0.05710545 0.0396379 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIC0EOSphp5r+UhpRSlIwBbJRLMowBdJRHQKn1hGtp22Z1fZQoaAZoCWgPQwgF+dnIdZP1v5SGlFKUaBVLMmgWR0Cp9Ua+evpydX2UKGgGaAloD0MII6MDkrAv9L+UhpRSlGgVSzJoFkdAqfUGhTOxB3V9lChoBmgJaA9DCDCeQUP/BPW/lIaUUpRoFUsyaBZHQKn0yMVDa5B1fZQoaAZoCWgPQwh9BP7w81/3v5SGlFKUaBVLMmgWR0Cp9sBFEy+IdX2UKGgGaAloD0MITwKbc/CM8b+UhpRSlGgVSzJoFkdAqfaCSkj5bnV9lChoBmgJaA9DCGqJldHIZ/O/lIaUUpRoFUsyaBZHQKn2QhIOH311fZQoaAZoCWgPQwj7PhwkRHn0v5SGlFKUaBVLMmgWR0Cp9gSDh99ddX2UKGgGaAloD0MI46dxb35D6L+UhpRSlGgVSzJoFkdAqffwxnFo+XV9lChoBmgJaA9DCB6oUx7dCOK/lIaUUpRoFUsyaBZHQKn3sr/82rJ1fZQoaAZoCWgPQwif6Lrwg/Psv5SGlFKUaBVLMmgWR0Cp93LRSgoPdX2UKGgGaAloD0MIPStpxTdU+b+UhpRSlGgVSzJoFkdAqfc1OmBOHnV9lChoBmgJaA9DCPZ+ox03/Ou/lIaUUpRoFUsyaBZHQKn5FE7W/ah1fZQoaAZoCWgPQwiPVrWko5ztv5SGlFKUaBVLMmgWR0Cp+NdGZuyedX2UKGgGaAloD0MIaAOwARHi9L+UhpRSlGgVSzJoFkdAqfiXK8tf5XV9lChoBmgJaA9DCMSY9PdS+Oy/lIaUUpRoFUsyaBZHQKn4WZLqUvB1fZQoaAZoCWgPQwjirfNvlz31v5SGlFKUaBVLMmgWR0Cp+urcj7hvdX2UKGgGaAloD0MIN8KiIk6n9b+UhpRSlGgVSzJoFkdAqfqtrGipN3V9lChoBmgJaA9DCLiumBHenva/lIaUUpRoFUsyaBZHQKn6bmQKa5R1fZQoaAZoCWgPQwgp0CfyJGnmv5SGlFKUaBVLMmgWR0Cp+jGLtNSJdX2UKGgGaAloD0MIIhgHl475+b+UhpRSlGgVSzJoFkdAqfzcuUUwjHV9lChoBmgJaA9DCCqMLQQ5qO2/lIaUUpRoFUsyaBZHQKn8n6Tnq3V1fZQoaAZoCWgPQwg9DoP5K6T5v5SGlFKUaBVLMmgWR0Cp/GBOpKjBdX2UKGgGaAloD0MINe1imune87+UhpRSlGgVSzJoFkdAqfwjuSfUWnV9lChoBmgJaA9DCK2+uipQi/W/lIaUUpRoFUsyaBZHQKn+8qvNeMR1fZQoaAZoCWgPQwjBOLh0zLnzv5SGlFKUaBVLMmgWR0Cp/rWKl54XdX2UKGgGaAloD0MI8fPfg9cu5r+UhpRSlGgVSzJoFkdAqf52fZmI03V9lChoBmgJaA9DCN5UpMLYQuy/lIaUUpRoFUsyaBZHQKn+Oe7tiQV1fZQoaAZoCWgPQwjzOXe7Xhrlv5SGlFKUaBVLMmgWR0CqATqjrRjSdX2UKGgGaAloD0MIFJUNayqL6L+UhpRSlGgVSzJoFkdAqgD/ECNjsnV9lChoBmgJaA9DCP95GjBIeue/lIaUUpRoFUsyaBZHQKoAv/ViF0x1fZQoaAZoCWgPQwiafR6jPPPcv5SGlFKUaBVLMmgWR0CqAIN5MURGdX2UKGgGaAloD0MIjPSidr9K8L+UhpRSlGgVSzJoFkdAqgM3azu4PXV9lChoBmgJaA9DCL5qZcIvdeK/lIaUUpRoFUsyaBZHQKoC+lSCOFR1fZQoaAZoCWgPQwhpxqLp7GTSv5SGlFKUaBVLMmgWR0CqArsotthvdX2UKGgGaAloD0MIW11OCYhJ67+UhpRSlGgVSzJoFkdAqgJ+ilBQenV9lChoBmgJaA9DCAKDpE+rqPC/lIaUUpRoFUsyaBZHQKoE7Eit7rt1fZQoaAZoCWgPQwhNo8nFGFjyv5SGlFKUaBVLMmgWR0CqBK5eqrBCdX2UKGgGaAloD0MINuSfGcQH4r+UhpRSlGgVSzJoFkdAqgRuSGJvYXV9lChoBmgJaA9DCK+WOzPBcOS/lIaUUpRoFUsyaBZHQKoEMLsKLKp1fZQoaAZoCWgPQwjggJauYFvwv5SGlFKUaBVLMmgWR0CqBh6lUIcBdX2UKGgGaAloD0MI1XYTfNP05b+UhpRSlGgVSzJoFkdAqgXgtthuwXV9lChoBmgJaA9DCOM2GsBbIO+/lIaUUpRoFUsyaBZHQKoFoMDwH7h1fZQoaAZoCWgPQwg6JLVQMrnkv5SGlFKUaBVLMmgWR0CqBWMw1zhhdX2UKGgGaAloD0MIYwtBDkqY97+UhpRSlGgVSzJoFkdAqgdYEEC/5HV9lChoBmgJaA9DCH6nyYy3Fe6/lIaUUpRoFUsyaBZHQKoHGhvBJqZ1fZQoaAZoCWgPQwgHtkqwONzxv5SGlFKUaBVLMmgWR0CqBtoJZ4fPdX2UKGgGaAloD0MIEM6njlVK2b+UhpRSlGgVSzJoFkdAqgacdHUc43V9lChoBmgJaA9DCDvFqkGYG/S/lIaUUpRoFUsyaBZHQKoIqvfTCtR1fZQoaAZoCWgPQwi+oIUEjO7wv5SGlFKUaBVLMmgWR0CqCG0VSGahdX2UKGgGaAloD0MIzOuIQzYQ8L+UhpRSlGgVSzJoFkdAqggtFH8TBnV9lChoBmgJaA9DCC9SKAtf3+e/lIaUUpRoFUsyaBZHQKoH73V09yN1fZQoaAZoCWgPQwj2mh4UlKLwv5SGlFKUaBVLMmgWR0CqCdt3GGVSdX2UKGgGaAloD0MIZK93f7xX5r+UhpRSlGgVSzJoFkdAqgmdgWrOq3V9lChoBmgJaA9DCM8vStBfaPO/lIaUUpRoFUsyaBZHQKoJXXDm8ul1fZQoaAZoCWgPQwgXKCmwAKbZv5SGlFKUaBVLMmgWR0CqCR/tx+8XdX2UKGgGaAloD0MIpYY2ABuQ8b+UhpRSlGgVSzJoFkdAqgsMfgaWHHV9lChoBmgJaA9DCDy/KEF/ofG/lIaUUpRoFUsyaBZHQKoKznf2saN1fZQoaAZoCWgPQwh06spneR7wv5SGlFKUaBVLMmgWR0CqCo55Z8rqdX2UKGgGaAloD0MIuk24V+at7L+UhpRSlGgVSzJoFkdAqgpQ6fapP3V9lChoBmgJaA9DCI+pu7ILhu6/lIaUUpRoFUsyaBZHQKoMSRBeHBV1fZQoaAZoCWgPQwi9xFimXyLqv5SGlFKUaBVLMmgWR0CqDAsVUModdX2UKGgGaAloD0MI+fVDbLDw7L+UhpRSlGgVSzJoFkdAqgvLGza9K3V9lChoBmgJaA9DCHe688Rzdvi/lIaUUpRoFUsyaBZHQKoLjZyuIRB1fZQoaAZoCWgPQwi858ByhAzov5SGlFKUaBVLMmgWR0CqDXGIj4YadX2UKGgGaAloD0MIRUYHJGEf87+UhpRSlGgVSzJoFkdAqg0zowEhaHV9lChoBmgJaA9DCEbPLXQlgua/lIaUUpRoFUsyaBZHQKoM87hegL91fZQoaAZoCWgPQwht/fSfNT/ev5SGlFKUaBVLMmgWR0CqDLZAyEcsdX2UKGgGaAloD0MI0o4bfjdd77+UhpRSlGgVSzJoFkdAqg6dbor4FnV9lChoBmgJaA9DCBb8NsR4DfK/lIaUUpRoFUsyaBZHQKoOX3j+7191fZQoaAZoCWgPQwikG2FRESfov5SGlFKUaBVLMmgWR0CqDh9h7VridX2UKGgGaAloD0MIR3GOOjqu27+UhpRSlGgVSzJoFkdAqg3h1mrbQHV9lChoBmgJaA9DCOnWa3pQUOG/lIaUUpRoFUsyaBZHQKoPycLBsRB1fZQoaAZoCWgPQwid2a7QB4v2v5SGlFKUaBVLMmgWR0CqD4vN/vv0dX2UKGgGaAloD0MIfuGVJM9197+UhpRSlGgVSzJoFkdAqg9LvE0iyXV9lChoBmgJaA9DCA05tp4hnPi/lIaUUpRoFUsyaBZHQKoPDyDIzWR1fZQoaAZoCWgPQwj0/GmjOp3zv5SGlFKUaBVLMmgWR0CqEPthE0BPdX2UKGgGaAloD0MIGJXUCWii9r+UhpRSlGgVSzJoFkdAqhC9c4YJmnV9lChoBmgJaA9DCJ62RgTjIPi/lIaUUpRoFUsyaBZHQKoQfXg9/z91fZQoaAZoCWgPQwgDXmbYKKv7v5SGlFKUaBVLMmgWR0CqED/y5I6KdX2UKGgGaAloD0MIp804DVEF67+UhpRSlGgVSzJoFkdAqhIsKXv6THV9lChoBmgJaA9DCIQpyqXxC+G/lIaUUpRoFUsyaBZHQKoR7jXFtKt1fZQoaAZoCWgPQwjAWrVrQlrhv5SGlFKUaBVLMmgWR0CqEa40EX+EdX2UKGgGaAloD0MI6+HLRBHS9L+UhpRSlGgVSzJoFkdAqhFwmVqveXV9lChoBmgJaA9DCJ4lyAiocOC/lIaUUpRoFUsyaBZHQKoTZFVktmN1fZQoaAZoCWgPQwim8naE08L0v5SGlFKUaBVLMmgWR0CqEyZof0VadX2UKGgGaAloD0MIx5xn7Et2+b+UhpRSlGgVSzJoFkdAqhLmX5WRzXV9lChoBmgJaA9DCKlKW1zjM+q/lIaUUpRoFUsyaBZHQKoSqNBnjAB1fZQoaAZoCWgPQwiyuP/IdOjyv5SGlFKUaBVLMmgWR0CqFMHSnccmdX2UKGgGaAloD0MI1IIXfQVp27+UhpRSlGgVSzJoFkdAqhSEbo8p1HV9lChoBmgJaA9DCFOUS+MXXvK/lIaUUpRoFUsyaBZHQKoURPZZjhF1fZQoaAZoCWgPQwjaIJOMnIXzv5SGlFKUaBVLMmgWR0CqFAevpyIYdX2UKGgGaAloD0MIk2+2uTG99r+UhpRSlGgVSzJoFkdAqhYc+C9RJnV9lChoBmgJaA9DCNdR1QRR9+6/lIaUUpRoFUsyaBZHQKoV3ySV4X51fZQoaAZoCWgPQwh6VPzfEZX4v5SGlFKUaBVLMmgWR0CqFZ8+RoysdX2UKGgGaAloD0MIiGnf3F89yr+UhpRSlGgVSzJoFkdAqhVhzvJA+3V9lChoBmgJaA9DCJavy/Cfbty/lIaUUpRoFUsyaBZHQKoXXreIl+p1fZQoaAZoCWgPQwi8AtGTMinwv5SGlFKUaBVLMmgWR0CqFyDZL7GedX2UKGgGaAloD0MI0A1N2emH6L+UhpRSlGgVSzJoFkdAqhbgwyqMnHV9lChoBmgJaA9DCPOtD+uN2uy/lIaUUpRoFUsyaBZHQKoWo1Nxlxx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (323 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.5776101913303137, "std_reward": 0.19643593734561093, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-20T10:42:57.203593"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e7c5e31d71281a9d8c8bcb26ee576707021b03ea2099e797540dd295fd2a633
3
+ size 3212