Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.58 +/- 0.20
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eee09c8fd46626061a0b906c17b30a156789d91532231f3ec2bc4d3911a0b46d
|
3 |
+
size 108011
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9849c750d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f9849c72480>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1676885711420138260,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHJvVPiZ4jDzfwAc/HJvVPiZ4jDzfwAc/HJvVPiZ4jDzfwAc/HJvVPiZ4jDzfwAc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAclpPP9jl2r89kL+/uFqMPjbSDD50Pv08o1h3v0HUcD+fRrY/b+kuPwcMxL4dnNs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAcm9U+JniMPN/ABz8orC47u4dbOu33n7scm9U+JniMPN/ABz8orC47u4dbOu33n7scm9U+JniMPN/ABz8orC47u4dbOu33n7scm9U+JniMPN/ABz8orC47u4dbOu33n7uUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.41719902 0.01714713 0.5302867 ]\n [0.41719902 0.01714713 0.5302867 ]\n [0.41719902 0.01714713 0.5302867 ]\n [0.41719902 0.01714713 0.5302867 ]]",
|
60 |
+
"desired_goal": "[[ 0.80997384 -1.7101393 -1.4965893 ]\n [ 0.27412963 0.13752064 0.03091357]\n [-0.96619624 0.94073874 1.4240302 ]\n [ 0.6832494 -0.38290426 1.7157017 ]]",
|
61 |
+
"observation": "[[ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]\n [ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]\n [ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]\n [ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUgIsOypl3j1mqzY+k/UUPhEByj0ldRw+yVWAvQGSuT1R1m4+hfDtu2jnab1bWyI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.00262465 0.10859139 0.17838821]\n [ 0.14546804 0.09863485 0.15279062]\n [-0.06266362 0.09061051 0.23323943]\n [-0.00726134 -0.05710545 0.0396379 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIC0EOSphp5r+UhpRSlIwBbJRLMowBdJRHQKn1hGtp22Z1fZQoaAZoCWgPQwgF+dnIdZP1v5SGlFKUaBVLMmgWR0Cp9Ua+evpydX2UKGgGaAloD0MII6MDkrAv9L+UhpRSlGgVSzJoFkdAqfUGhTOxB3V9lChoBmgJaA9DCDCeQUP/BPW/lIaUUpRoFUsyaBZHQKn0yMVDa5B1fZQoaAZoCWgPQwh9BP7w81/3v5SGlFKUaBVLMmgWR0Cp9sBFEy+IdX2UKGgGaAloD0MITwKbc/CM8b+UhpRSlGgVSzJoFkdAqfaCSkj5bnV9lChoBmgJaA9DCGqJldHIZ/O/lIaUUpRoFUsyaBZHQKn2QhIOH311fZQoaAZoCWgPQwj7PhwkRHn0v5SGlFKUaBVLMmgWR0Cp9gSDh99ddX2UKGgGaAloD0MI46dxb35D6L+UhpRSlGgVSzJoFkdAqffwxnFo+XV9lChoBmgJaA9DCB6oUx7dCOK/lIaUUpRoFUsyaBZHQKn3sr/82rJ1fZQoaAZoCWgPQwif6Lrwg/Psv5SGlFKUaBVLMmgWR0Cp93LRSgoPdX2UKGgGaAloD0MIPStpxTdU+b+UhpRSlGgVSzJoFkdAqfc1OmBOHnV9lChoBmgJaA9DCPZ+ox03/Ou/lIaUUpRoFUsyaBZHQKn5FE7W/ah1fZQoaAZoCWgPQwiPVrWko5ztv5SGlFKUaBVLMmgWR0Cp+NdGZuyedX2UKGgGaAloD0MIaAOwARHi9L+UhpRSlGgVSzJoFkdAqfiXK8tf5XV9lChoBmgJaA9DCMSY9PdS+Oy/lIaUUpRoFUsyaBZHQKn4WZLqUvB1fZQoaAZoCWgPQwjirfNvlz31v5SGlFKUaBVLMmgWR0Cp+urcj7hvdX2UKGgGaAloD0MIN8KiIk6n9b+UhpRSlGgVSzJoFkdAqfqtrGipN3V9lChoBmgJaA9DCLiumBHenva/lIaUUpRoFUsyaBZHQKn6bmQKa5R1fZQoaAZoCWgPQwgp0CfyJGnmv5SGlFKUaBVLMmgWR0Cp+jGLtNSJdX2UKGgGaAloD0MIIhgHl475+b+UhpRSlGgVSzJoFkdAqfzcuUUwjHV9lChoBmgJaA9DCCqMLQQ5qO2/lIaUUpRoFUsyaBZHQKn8n6Tnq3V1fZQoaAZoCWgPQwg9DoP5K6T5v5SGlFKUaBVLMmgWR0Cp/GBOpKjBdX2UKGgGaAloD0MINe1imune87+UhpRSlGgVSzJoFkdAqfwjuSfUWnV9lChoBmgJaA9DCK2+uipQi/W/lIaUUpRoFUsyaBZHQKn+8qvNeMR1fZQoaAZoCWgPQwjBOLh0zLnzv5SGlFKUaBVLMmgWR0Cp/rWKl54XdX2UKGgGaAloD0MI8fPfg9cu5r+UhpRSlGgVSzJoFkdAqf52fZmI03V9lChoBmgJaA9DCN5UpMLYQuy/lIaUUpRoFUsyaBZHQKn+Oe7tiQV1fZQoaAZoCWgPQwjzOXe7Xhrlv5SGlFKUaBVLMmgWR0CqATqjrRjSdX2UKGgGaAloD0MIFJUNayqL6L+UhpRSlGgVSzJoFkdAqgD/ECNjsnV9lChoBmgJaA9DCP95GjBIeue/lIaUUpRoFUsyaBZHQKoAv/ViF0x1fZQoaAZoCWgPQwiafR6jPPPcv5SGlFKUaBVLMmgWR0CqAIN5MURGdX2UKGgGaAloD0MIjPSidr9K8L+UhpRSlGgVSzJoFkdAqgM3azu4PXV9lChoBmgJaA9DCL5qZcIvdeK/lIaUUpRoFUsyaBZHQKoC+lSCOFR1fZQoaAZoCWgPQwhpxqLp7GTSv5SGlFKUaBVLMmgWR0CqArsotthvdX2UKGgGaAloD0MIW11OCYhJ67+UhpRSlGgVSzJoFkdAqgJ+ilBQenV9lChoBmgJaA9DCAKDpE+rqPC/lIaUUpRoFUsyaBZHQKoE7Eit7rt1fZQoaAZoCWgPQwhNo8nFGFjyv5SGlFKUaBVLMmgWR0CqBK5eqrBCdX2UKGgGaAloD0MINuSfGcQH4r+UhpRSlGgVSzJoFkdAqgRuSGJvYXV9lChoBmgJaA9DCK+WOzPBcOS/lIaUUpRoFUsyaBZHQKoEMLsKLKp1fZQoaAZoCWgPQwjggJauYFvwv5SGlFKUaBVLMmgWR0CqBh6lUIcBdX2UKGgGaAloD0MI1XYTfNP05b+UhpRSlGgVSzJoFkdAqgXgtthuwXV9lChoBmgJaA9DCOM2GsBbIO+/lIaUUpRoFUsyaBZHQKoFoMDwH7h1fZQoaAZoCWgPQwg6JLVQMrnkv5SGlFKUaBVLMmgWR0CqBWMw1zhhdX2UKGgGaAloD0MIYwtBDkqY97+UhpRSlGgVSzJoFkdAqgdYEEC/5HV9lChoBmgJaA9DCH6nyYy3Fe6/lIaUUpRoFUsyaBZHQKoHGhvBJqZ1fZQoaAZoCWgPQwgHtkqwONzxv5SGlFKUaBVLMmgWR0CqBtoJZ4fPdX2UKGgGaAloD0MIEM6njlVK2b+UhpRSlGgVSzJoFkdAqgacdHUc43V9lChoBmgJaA9DCDvFqkGYG/S/lIaUUpRoFUsyaBZHQKoIqvfTCtR1fZQoaAZoCWgPQwi+oIUEjO7wv5SGlFKUaBVLMmgWR0CqCG0VSGahdX2UKGgGaAloD0MIzOuIQzYQ8L+UhpRSlGgVSzJoFkdAqggtFH8TBnV9lChoBmgJaA9DCC9SKAtf3+e/lIaUUpRoFUsyaBZHQKoH73V09yN1fZQoaAZoCWgPQwj2mh4UlKLwv5SGlFKUaBVLMmgWR0CqCdt3GGVSdX2UKGgGaAloD0MIZK93f7xX5r+UhpRSlGgVSzJoFkdAqgmdgWrOq3V9lChoBmgJaA9DCM8vStBfaPO/lIaUUpRoFUsyaBZHQKoJXXDm8ul1fZQoaAZoCWgPQwgXKCmwAKbZv5SGlFKUaBVLMmgWR0CqCR/tx+8XdX2UKGgGaAloD0MIpYY2ABuQ8b+UhpRSlGgVSzJoFkdAqgsMfgaWHHV9lChoBmgJaA9DCDy/KEF/ofG/lIaUUpRoFUsyaBZHQKoKznf2saN1fZQoaAZoCWgPQwh06spneR7wv5SGlFKUaBVLMmgWR0CqCo55Z8rqdX2UKGgGaAloD0MIuk24V+at7L+UhpRSlGgVSzJoFkdAqgpQ6fapP3V9lChoBmgJaA9DCI+pu7ILhu6/lIaUUpRoFUsyaBZHQKoMSRBeHBV1fZQoaAZoCWgPQwi9xFimXyLqv5SGlFKUaBVLMmgWR0CqDAsVUModdX2UKGgGaAloD0MI+fVDbLDw7L+UhpRSlGgVSzJoFkdAqgvLGza9K3V9lChoBmgJaA9DCHe688Rzdvi/lIaUUpRoFUsyaBZHQKoLjZyuIRB1fZQoaAZoCWgPQwi858ByhAzov5SGlFKUaBVLMmgWR0CqDXGIj4YadX2UKGgGaAloD0MIRUYHJGEf87+UhpRSlGgVSzJoFkdAqg0zowEhaHV9lChoBmgJaA9DCEbPLXQlgua/lIaUUpRoFUsyaBZHQKoM87hegL91fZQoaAZoCWgPQwht/fSfNT/ev5SGlFKUaBVLMmgWR0CqDLZAyEcsdX2UKGgGaAloD0MI0o4bfjdd77+UhpRSlGgVSzJoFkdAqg6dbor4FnV9lChoBmgJaA9DCBb8NsR4DfK/lIaUUpRoFUsyaBZHQKoOX3j+7191fZQoaAZoCWgPQwikG2FRESfov5SGlFKUaBVLMmgWR0CqDh9h7VridX2UKGgGaAloD0MIR3GOOjqu27+UhpRSlGgVSzJoFkdAqg3h1mrbQHV9lChoBmgJaA9DCOnWa3pQUOG/lIaUUpRoFUsyaBZHQKoPycLBsRB1fZQoaAZoCWgPQwid2a7QB4v2v5SGlFKUaBVLMmgWR0CqD4vN/vv0dX2UKGgGaAloD0MIfuGVJM9197+UhpRSlGgVSzJoFkdAqg9LvE0iyXV9lChoBmgJaA9DCA05tp4hnPi/lIaUUpRoFUsyaBZHQKoPDyDIzWR1fZQoaAZoCWgPQwj0/GmjOp3zv5SGlFKUaBVLMmgWR0CqEPthE0BPdX2UKGgGaAloD0MIGJXUCWii9r+UhpRSlGgVSzJoFkdAqhC9c4YJmnV9lChoBmgJaA9DCJ62RgTjIPi/lIaUUpRoFUsyaBZHQKoQfXg9/z91fZQoaAZoCWgPQwgDXmbYKKv7v5SGlFKUaBVLMmgWR0CqED/y5I6KdX2UKGgGaAloD0MIp804DVEF67+UhpRSlGgVSzJoFkdAqhIsKXv6THV9lChoBmgJaA9DCIQpyqXxC+G/lIaUUpRoFUsyaBZHQKoR7jXFtKt1fZQoaAZoCWgPQwjAWrVrQlrhv5SGlFKUaBVLMmgWR0CqEa40EX+EdX2UKGgGaAloD0MI6+HLRBHS9L+UhpRSlGgVSzJoFkdAqhFwmVqveXV9lChoBmgJaA9DCJ4lyAiocOC/lIaUUpRoFUsyaBZHQKoTZFVktmN1fZQoaAZoCWgPQwim8naE08L0v5SGlFKUaBVLMmgWR0CqEyZof0VadX2UKGgGaAloD0MIx5xn7Et2+b+UhpRSlGgVSzJoFkdAqhLmX5WRzXV9lChoBmgJaA9DCKlKW1zjM+q/lIaUUpRoFUsyaBZHQKoSqNBnjAB1fZQoaAZoCWgPQwiyuP/IdOjyv5SGlFKUaBVLMmgWR0CqFMHSnccmdX2UKGgGaAloD0MI1IIXfQVp27+UhpRSlGgVSzJoFkdAqhSEbo8p1HV9lChoBmgJaA9DCFOUS+MXXvK/lIaUUpRoFUsyaBZHQKoURPZZjhF1fZQoaAZoCWgPQwjaIJOMnIXzv5SGlFKUaBVLMmgWR0CqFAevpyIYdX2UKGgGaAloD0MIk2+2uTG99r+UhpRSlGgVSzJoFkdAqhYc+C9RJnV9lChoBmgJaA9DCNdR1QRR9+6/lIaUUpRoFUsyaBZHQKoV3ySV4X51fZQoaAZoCWgPQwh6VPzfEZX4v5SGlFKUaBVLMmgWR0CqFZ8+RoysdX2UKGgGaAloD0MIiGnf3F89yr+UhpRSlGgVSzJoFkdAqhVhzvJA+3V9lChoBmgJaA9DCJavy/Cfbty/lIaUUpRoFUsyaBZHQKoXXreIl+p1fZQoaAZoCWgPQwi8AtGTMinwv5SGlFKUaBVLMmgWR0CqFyDZL7GedX2UKGgGaAloD0MI0A1N2emH6L+UhpRSlGgVSzJoFkdAqhbgwyqMnHV9lChoBmgJaA9DCPOtD+uN2uy/lIaUUpRoFUsyaBZHQKoWo1Nxlxx1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:866325036050dffbf4af6858ed107edcb5a68ba5876cd043e3d3968ce4a8e472
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c9c09db6afa962741e72b6f1375aa7e01f4d6a6aebe96679fffd34b9de48795
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9849c750d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9849c72480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676885711420138260, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHJvVPiZ4jDzfwAc/HJvVPiZ4jDzfwAc/HJvVPiZ4jDzfwAc/HJvVPiZ4jDzfwAc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAclpPP9jl2r89kL+/uFqMPjbSDD50Pv08o1h3v0HUcD+fRrY/b+kuPwcMxL4dnNs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAcm9U+JniMPN/ABz8orC47u4dbOu33n7scm9U+JniMPN/ABz8orC47u4dbOu33n7scm9U+JniMPN/ABz8orC47u4dbOu33n7scm9U+JniMPN/ABz8orC47u4dbOu33n7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41719902 0.01714713 0.5302867 ]\n [0.41719902 0.01714713 0.5302867 ]\n [0.41719902 0.01714713 0.5302867 ]\n [0.41719902 0.01714713 0.5302867 ]]", "desired_goal": "[[ 0.80997384 -1.7101393 -1.4965893 ]\n [ 0.27412963 0.13752064 0.03091357]\n [-0.96619624 0.94073874 1.4240302 ]\n [ 0.6832494 -0.38290426 1.7157017 ]]", "observation": "[[ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]\n [ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]\n [ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]\n [ 0.41719902 0.01714713 0.5302867 0.00266529 0.00083744 -0.00488185]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUgIsOypl3j1mqzY+k/UUPhEByj0ldRw+yVWAvQGSuT1R1m4+hfDtu2jnab1bWyI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00262465 0.10859139 0.17838821]\n [ 0.14546804 0.09863485 0.15279062]\n [-0.06266362 0.09061051 0.23323943]\n [-0.00726134 -0.05710545 0.0396379 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIC0EOSphp5r+UhpRSlIwBbJRLMowBdJRHQKn1hGtp22Z1fZQoaAZoCWgPQwgF+dnIdZP1v5SGlFKUaBVLMmgWR0Cp9Ua+evpydX2UKGgGaAloD0MII6MDkrAv9L+UhpRSlGgVSzJoFkdAqfUGhTOxB3V9lChoBmgJaA9DCDCeQUP/BPW/lIaUUpRoFUsyaBZHQKn0yMVDa5B1fZQoaAZoCWgPQwh9BP7w81/3v5SGlFKUaBVLMmgWR0Cp9sBFEy+IdX2UKGgGaAloD0MITwKbc/CM8b+UhpRSlGgVSzJoFkdAqfaCSkj5bnV9lChoBmgJaA9DCGqJldHIZ/O/lIaUUpRoFUsyaBZHQKn2QhIOH311fZQoaAZoCWgPQwj7PhwkRHn0v5SGlFKUaBVLMmgWR0Cp9gSDh99ddX2UKGgGaAloD0MI46dxb35D6L+UhpRSlGgVSzJoFkdAqffwxnFo+XV9lChoBmgJaA9DCB6oUx7dCOK/lIaUUpRoFUsyaBZHQKn3sr/82rJ1fZQoaAZoCWgPQwif6Lrwg/Psv5SGlFKUaBVLMmgWR0Cp93LRSgoPdX2UKGgGaAloD0MIPStpxTdU+b+UhpRSlGgVSzJoFkdAqfc1OmBOHnV9lChoBmgJaA9DCPZ+ox03/Ou/lIaUUpRoFUsyaBZHQKn5FE7W/ah1fZQoaAZoCWgPQwiPVrWko5ztv5SGlFKUaBVLMmgWR0Cp+NdGZuyedX2UKGgGaAloD0MIaAOwARHi9L+UhpRSlGgVSzJoFkdAqfiXK8tf5XV9lChoBmgJaA9DCMSY9PdS+Oy/lIaUUpRoFUsyaBZHQKn4WZLqUvB1fZQoaAZoCWgPQwjirfNvlz31v5SGlFKUaBVLMmgWR0Cp+urcj7hvdX2UKGgGaAloD0MIN8KiIk6n9b+UhpRSlGgVSzJoFkdAqfqtrGipN3V9lChoBmgJaA9DCLiumBHenva/lIaUUpRoFUsyaBZHQKn6bmQKa5R1fZQoaAZoCWgPQwgp0CfyJGnmv5SGlFKUaBVLMmgWR0Cp+jGLtNSJdX2UKGgGaAloD0MIIhgHl475+b+UhpRSlGgVSzJoFkdAqfzcuUUwjHV9lChoBmgJaA9DCCqMLQQ5qO2/lIaUUpRoFUsyaBZHQKn8n6Tnq3V1fZQoaAZoCWgPQwg9DoP5K6T5v5SGlFKUaBVLMmgWR0Cp/GBOpKjBdX2UKGgGaAloD0MINe1imune87+UhpRSlGgVSzJoFkdAqfwjuSfUWnV9lChoBmgJaA9DCK2+uipQi/W/lIaUUpRoFUsyaBZHQKn+8qvNeMR1fZQoaAZoCWgPQwjBOLh0zLnzv5SGlFKUaBVLMmgWR0Cp/rWKl54XdX2UKGgGaAloD0MI8fPfg9cu5r+UhpRSlGgVSzJoFkdAqf52fZmI03V9lChoBmgJaA9DCN5UpMLYQuy/lIaUUpRoFUsyaBZHQKn+Oe7tiQV1fZQoaAZoCWgPQwjzOXe7Xhrlv5SGlFKUaBVLMmgWR0CqATqjrRjSdX2UKGgGaAloD0MIFJUNayqL6L+UhpRSlGgVSzJoFkdAqgD/ECNjsnV9lChoBmgJaA9DCP95GjBIeue/lIaUUpRoFUsyaBZHQKoAv/ViF0x1fZQoaAZoCWgPQwiafR6jPPPcv5SGlFKUaBVLMmgWR0CqAIN5MURGdX2UKGgGaAloD0MIjPSidr9K8L+UhpRSlGgVSzJoFkdAqgM3azu4PXV9lChoBmgJaA9DCL5qZcIvdeK/lIaUUpRoFUsyaBZHQKoC+lSCOFR1fZQoaAZoCWgPQwhpxqLp7GTSv5SGlFKUaBVLMmgWR0CqArsotthvdX2UKGgGaAloD0MIW11OCYhJ67+UhpRSlGgVSzJoFkdAqgJ+ilBQenV9lChoBmgJaA9DCAKDpE+rqPC/lIaUUpRoFUsyaBZHQKoE7Eit7rt1fZQoaAZoCWgPQwhNo8nFGFjyv5SGlFKUaBVLMmgWR0CqBK5eqrBCdX2UKGgGaAloD0MINuSfGcQH4r+UhpRSlGgVSzJoFkdAqgRuSGJvYXV9lChoBmgJaA9DCK+WOzPBcOS/lIaUUpRoFUsyaBZHQKoEMLsKLKp1fZQoaAZoCWgPQwjggJauYFvwv5SGlFKUaBVLMmgWR0CqBh6lUIcBdX2UKGgGaAloD0MI1XYTfNP05b+UhpRSlGgVSzJoFkdAqgXgtthuwXV9lChoBmgJaA9DCOM2GsBbIO+/lIaUUpRoFUsyaBZHQKoFoMDwH7h1fZQoaAZoCWgPQwg6JLVQMrnkv5SGlFKUaBVLMmgWR0CqBWMw1zhhdX2UKGgGaAloD0MIYwtBDkqY97+UhpRSlGgVSzJoFkdAqgdYEEC/5HV9lChoBmgJaA9DCH6nyYy3Fe6/lIaUUpRoFUsyaBZHQKoHGhvBJqZ1fZQoaAZoCWgPQwgHtkqwONzxv5SGlFKUaBVLMmgWR0CqBtoJZ4fPdX2UKGgGaAloD0MIEM6njlVK2b+UhpRSlGgVSzJoFkdAqgacdHUc43V9lChoBmgJaA9DCDvFqkGYG/S/lIaUUpRoFUsyaBZHQKoIqvfTCtR1fZQoaAZoCWgPQwi+oIUEjO7wv5SGlFKUaBVLMmgWR0CqCG0VSGahdX2UKGgGaAloD0MIzOuIQzYQ8L+UhpRSlGgVSzJoFkdAqggtFH8TBnV9lChoBmgJaA9DCC9SKAtf3+e/lIaUUpRoFUsyaBZHQKoH73V09yN1fZQoaAZoCWgPQwj2mh4UlKLwv5SGlFKUaBVLMmgWR0CqCdt3GGVSdX2UKGgGaAloD0MIZK93f7xX5r+UhpRSlGgVSzJoFkdAqgmdgWrOq3V9lChoBmgJaA9DCM8vStBfaPO/lIaUUpRoFUsyaBZHQKoJXXDm8ul1fZQoaAZoCWgPQwgXKCmwAKbZv5SGlFKUaBVLMmgWR0CqCR/tx+8XdX2UKGgGaAloD0MIpYY2ABuQ8b+UhpRSlGgVSzJoFkdAqgsMfgaWHHV9lChoBmgJaA9DCDy/KEF/ofG/lIaUUpRoFUsyaBZHQKoKznf2saN1fZQoaAZoCWgPQwh06spneR7wv5SGlFKUaBVLMmgWR0CqCo55Z8rqdX2UKGgGaAloD0MIuk24V+at7L+UhpRSlGgVSzJoFkdAqgpQ6fapP3V9lChoBmgJaA9DCI+pu7ILhu6/lIaUUpRoFUsyaBZHQKoMSRBeHBV1fZQoaAZoCWgPQwi9xFimXyLqv5SGlFKUaBVLMmgWR0CqDAsVUModdX2UKGgGaAloD0MI+fVDbLDw7L+UhpRSlGgVSzJoFkdAqgvLGza9K3V9lChoBmgJaA9DCHe688Rzdvi/lIaUUpRoFUsyaBZHQKoLjZyuIRB1fZQoaAZoCWgPQwi858ByhAzov5SGlFKUaBVLMmgWR0CqDXGIj4YadX2UKGgGaAloD0MIRUYHJGEf87+UhpRSlGgVSzJoFkdAqg0zowEhaHV9lChoBmgJaA9DCEbPLXQlgua/lIaUUpRoFUsyaBZHQKoM87hegL91fZQoaAZoCWgPQwht/fSfNT/ev5SGlFKUaBVLMmgWR0CqDLZAyEcsdX2UKGgGaAloD0MI0o4bfjdd77+UhpRSlGgVSzJoFkdAqg6dbor4FnV9lChoBmgJaA9DCBb8NsR4DfK/lIaUUpRoFUsyaBZHQKoOX3j+7191fZQoaAZoCWgPQwikG2FRESfov5SGlFKUaBVLMmgWR0CqDh9h7VridX2UKGgGaAloD0MIR3GOOjqu27+UhpRSlGgVSzJoFkdAqg3h1mrbQHV9lChoBmgJaA9DCOnWa3pQUOG/lIaUUpRoFUsyaBZHQKoPycLBsRB1fZQoaAZoCWgPQwid2a7QB4v2v5SGlFKUaBVLMmgWR0CqD4vN/vv0dX2UKGgGaAloD0MIfuGVJM9197+UhpRSlGgVSzJoFkdAqg9LvE0iyXV9lChoBmgJaA9DCA05tp4hnPi/lIaUUpRoFUsyaBZHQKoPDyDIzWR1fZQoaAZoCWgPQwj0/GmjOp3zv5SGlFKUaBVLMmgWR0CqEPthE0BPdX2UKGgGaAloD0MIGJXUCWii9r+UhpRSlGgVSzJoFkdAqhC9c4YJmnV9lChoBmgJaA9DCJ62RgTjIPi/lIaUUpRoFUsyaBZHQKoQfXg9/z91fZQoaAZoCWgPQwgDXmbYKKv7v5SGlFKUaBVLMmgWR0CqED/y5I6KdX2UKGgGaAloD0MIp804DVEF67+UhpRSlGgVSzJoFkdAqhIsKXv6THV9lChoBmgJaA9DCIQpyqXxC+G/lIaUUpRoFUsyaBZHQKoR7jXFtKt1fZQoaAZoCWgPQwjAWrVrQlrhv5SGlFKUaBVLMmgWR0CqEa40EX+EdX2UKGgGaAloD0MI6+HLRBHS9L+UhpRSlGgVSzJoFkdAqhFwmVqveXV9lChoBmgJaA9DCJ4lyAiocOC/lIaUUpRoFUsyaBZHQKoTZFVktmN1fZQoaAZoCWgPQwim8naE08L0v5SGlFKUaBVLMmgWR0CqEyZof0VadX2UKGgGaAloD0MIx5xn7Et2+b+UhpRSlGgVSzJoFkdAqhLmX5WRzXV9lChoBmgJaA9DCKlKW1zjM+q/lIaUUpRoFUsyaBZHQKoSqNBnjAB1fZQoaAZoCWgPQwiyuP/IdOjyv5SGlFKUaBVLMmgWR0CqFMHSnccmdX2UKGgGaAloD0MI1IIXfQVp27+UhpRSlGgVSzJoFkdAqhSEbo8p1HV9lChoBmgJaA9DCFOUS+MXXvK/lIaUUpRoFUsyaBZHQKoURPZZjhF1fZQoaAZoCWgPQwjaIJOMnIXzv5SGlFKUaBVLMmgWR0CqFAevpyIYdX2UKGgGaAloD0MIk2+2uTG99r+UhpRSlGgVSzJoFkdAqhYc+C9RJnV9lChoBmgJaA9DCNdR1QRR9+6/lIaUUpRoFUsyaBZHQKoV3ySV4X51fZQoaAZoCWgPQwh6VPzfEZX4v5SGlFKUaBVLMmgWR0CqFZ8+RoysdX2UKGgGaAloD0MIiGnf3F89yr+UhpRSlGgVSzJoFkdAqhVhzvJA+3V9lChoBmgJaA9DCJavy/Cfbty/lIaUUpRoFUsyaBZHQKoXXreIl+p1fZQoaAZoCWgPQwi8AtGTMinwv5SGlFKUaBVLMmgWR0CqFyDZL7GedX2UKGgGaAloD0MI0A1N2emH6L+UhpRSlGgVSzJoFkdAqhbgwyqMnHV9lChoBmgJaA9DCPOtD+uN2uy/lIaUUpRoFUsyaBZHQKoWo1Nxlxx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (323 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.5776101913303137, "std_reward": 0.19643593734561093, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-20T10:42:57.203593"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e7c5e31d71281a9d8c8bcb26ee576707021b03ea2099e797540dd295fd2a633
|
3 |
+
size 3212
|