Pablogps commited on
Commit
1b4ae8e
1 Parent(s): 49b6c59

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -0
README.md CHANGED
@@ -158,6 +158,8 @@ Batch size was 256 for training with 128 sequence length, and 48 for 512 sequenc
158
 
159
  ## Results
160
 
 
 
161
  Our first test, tagged `beta` in this repository, refers to an initial experiment using `Stepwise` on 128 sequence length and trained for 210k steps. Two nearly identical versions of this model can be found, one at **bertin-roberta-base-spanish** and the other at **flax-community/bertin-roberta-large-spanish** (do note this is **not our best model**!). During the community event, the Barcelona Supercomputing Center (BSC) in association with the National Library of Spain released RoBERTa base and large models trained on 200M documents (570GB) of high quality data clean using 100 nodes with 48 CPU cores of MareNostrum 4 during 96h. At the end of the process they were left with 2TB of clean data at the document level that were further cleaned up to the final 570GB. This is an interesting contrast to our own resources (3xTPUv3-8 for 10 days to do cleaning, sampling, taining, and evaluation) and makes for a valuable reference. The BSC team evaluated our early release of the model `beta` and the results can be seen in Table 1.
162
 
163
  Our final models were trained on a different number of steps and sequence lengths and achieve different—higher—masked-word prediction accuracies. Despite these limitations it is interesting to see the results they obtained using the early version of our model. Note that some of the datasets used for evaluation by BSC are not freely available, therefore it is not possible to verify the figures.
 
158
 
159
  ## Results
160
 
161
+ Please refer to the **evaluation** folder for training scripts for downstream tasks.
162
+
163
  Our first test, tagged `beta` in this repository, refers to an initial experiment using `Stepwise` on 128 sequence length and trained for 210k steps. Two nearly identical versions of this model can be found, one at **bertin-roberta-base-spanish** and the other at **flax-community/bertin-roberta-large-spanish** (do note this is **not our best model**!). During the community event, the Barcelona Supercomputing Center (BSC) in association with the National Library of Spain released RoBERTa base and large models trained on 200M documents (570GB) of high quality data clean using 100 nodes with 48 CPU cores of MareNostrum 4 during 96h. At the end of the process they were left with 2TB of clean data at the document level that were further cleaned up to the final 570GB. This is an interesting contrast to our own resources (3xTPUv3-8 for 10 days to do cleaning, sampling, taining, and evaluation) and makes for a valuable reference. The BSC team evaluated our early release of the model `beta` and the results can be seen in Table 1.
164
 
165
  Our final models were trained on a different number of steps and sequence lengths and achieve different—higher—masked-word prediction accuracies. Despite these limitations it is interesting to see the results they obtained using the early version of our model. Note that some of the datasets used for evaluation by BSC are not freely available, therefore it is not possible to verify the figures.