|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for token classification. |
|
""" |
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
from dataclasses import dataclass, field |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import datasets |
|
import numpy as np |
|
from datasets import ClassLabel, load_dataset, load_metric |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForTokenClassification, |
|
AutoTokenizer, |
|
DataCollatorForTokenClassification, |
|
HfArgumentParser, |
|
PreTrainedTokenizerFast, |
|
Trainer, |
|
TrainingArguments, |
|
set_seed, |
|
) |
|
from transformers.trainer_utils import get_last_checkpoint |
|
from transformers.utils import check_min_version |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
|
|
check_min_version("4.9.0.dev0") |
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " |
|
"with private models)." |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."}) |
|
dataset_name: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
train_file: Optional[str] = field( |
|
default=None, metadata={"help": "The input training data file (a csv or JSON file)."} |
|
) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."}, |
|
) |
|
test_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."}, |
|
) |
|
text_column_name: Optional[str] = field( |
|
default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."} |
|
) |
|
label_column_name: Optional[str] = field( |
|
default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."} |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
pad_to_max_length: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to pad all samples to model maximum sentence length. " |
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More " |
|
"efficient on GPU but very bad for TPU." |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_predict_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this " |
|
"value if set." |
|
}, |
|
) |
|
label_all_tokens: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to put the label for one word on all tokens of generated by that word or just on the " |
|
"one (in which case the other tokens will have a padding index)." |
|
}, |
|
) |
|
return_entity_level_metrics: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None: |
|
raise ValueError("Need either a dataset name or a training/validation file.") |
|
else: |
|
if self.train_file is not None: |
|
extension = self.train_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." |
|
self.task_name = self.task_name.lower() |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
log_level = training_args.get_process_log_level() |
|
logger.setLevel(log_level) |
|
datasets.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
last_checkpoint = None |
|
run_name = f"{model_args.model_name_or_path}-{np.random.randint(1000):04d}" |
|
training_args.output_dir = str(Path(training_args.output_dir) / run_name) |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.dataset_name is not None: |
|
|
|
raw_datasets = load_dataset( |
|
data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir |
|
) |
|
else: |
|
data_files = {} |
|
if data_args.train_file is not None: |
|
data_files["train"] = data_args.train_file |
|
if data_args.validation_file is not None: |
|
data_files["validation"] = data_args.validation_file |
|
if data_args.test_file is not None: |
|
data_files["test"] = data_args.test_file |
|
extension = data_args.train_file.split(".")[-1] |
|
raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir) |
|
|
|
|
|
|
|
if training_args.do_train: |
|
column_names = raw_datasets["train"].column_names |
|
features = raw_datasets["train"].features |
|
else: |
|
column_names = raw_datasets["validation"].column_names |
|
features = raw_datasets["validation"].features |
|
|
|
if data_args.text_column_name is not None: |
|
text_column_name = data_args.text_column_name |
|
elif "tokens" in column_names: |
|
text_column_name = "tokens" |
|
else: |
|
text_column_name = column_names[0] |
|
|
|
if data_args.label_column_name is not None: |
|
label_column_name = data_args.label_column_name |
|
elif f"{data_args.task_name}_tags" in column_names: |
|
label_column_name = f"{data_args.task_name}_tags" |
|
else: |
|
label_column_name = column_names[1] |
|
|
|
|
|
|
|
def get_label_list(labels): |
|
unique_labels = set() |
|
for label in labels: |
|
unique_labels = unique_labels | set(label) |
|
label_list = list(unique_labels) |
|
label_list.sort() |
|
return label_list |
|
|
|
if isinstance(features[label_column_name].feature, ClassLabel): |
|
label_list = features[label_column_name].feature.names |
|
|
|
label_to_id = {i: i for i in range(len(label_list))} |
|
else: |
|
label_list = get_label_list(raw_datasets["train"][label_column_name]) |
|
label_to_id = {l: i for i, l in enumerate(label_list)} |
|
num_labels = len(label_list) |
|
|
|
|
|
|
|
|
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path, |
|
num_labels=num_labels, |
|
label2id=label_to_id, |
|
id2label={i: l for l, i in label_to_id.items()}, |
|
finetuning_task=data_args.task_name, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path |
|
if config.model_type in {"gpt2", "roberta"}: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
tokenizer_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
use_fast=True, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
add_prefix_space=True, |
|
) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
tokenizer_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
use_fast=True, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
tokenizer.model_max_length = 512 |
|
|
|
model = AutoModelForTokenClassification.from_pretrained( |
|
model_args.model_name_or_path, |
|
from_tf=bool(".ckpt" in model_args.model_name_or_path), |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
if not isinstance(tokenizer, PreTrainedTokenizerFast): |
|
raise ValueError( |
|
"This example script only works for models that have a fast tokenizer. Checkout the big table of models " |
|
"at https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet this " |
|
"requirement" |
|
) |
|
|
|
|
|
|
|
padding = "max_length" if data_args.pad_to_max_length else False |
|
|
|
|
|
def tokenize_and_align_labels(examples): |
|
tokenized_inputs = tokenizer( |
|
examples[text_column_name], |
|
padding=padding, |
|
max_length=512, |
|
truncation=True, |
|
|
|
is_split_into_words=True, |
|
) |
|
labels = [] |
|
for i, label in enumerate(examples[label_column_name]): |
|
word_ids = tokenized_inputs.word_ids(batch_index=i) |
|
previous_word_idx = None |
|
label_ids = [] |
|
for word_idx in word_ids: |
|
|
|
|
|
if word_idx is None: |
|
label_ids.append(-100) |
|
|
|
elif word_idx != previous_word_idx: |
|
label_ids.append(label_to_id[label[word_idx]]) |
|
|
|
|
|
else: |
|
label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100) |
|
previous_word_idx = word_idx |
|
|
|
labels.append(label_ids) |
|
tokenized_inputs["labels"] = labels |
|
return tokenized_inputs |
|
|
|
if training_args.do_train: |
|
if "train" not in raw_datasets: |
|
raise ValueError("--do_train requires a train dataset") |
|
train_dataset = raw_datasets["train"] |
|
if data_args.max_train_samples is not None: |
|
train_dataset = train_dataset.select(range(data_args.max_train_samples)) |
|
with training_args.main_process_first(desc="train dataset map pre-processing"): |
|
train_dataset = train_dataset.map( |
|
tokenize_and_align_labels, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on train dataset", |
|
) |
|
|
|
if training_args.do_eval: |
|
if "validation" not in raw_datasets: |
|
raise ValueError("--do_eval requires a validation dataset") |
|
eval_dataset = raw_datasets["validation"] |
|
if data_args.max_eval_samples is not None: |
|
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) |
|
with training_args.main_process_first(desc="validation dataset map pre-processing"): |
|
eval_dataset = eval_dataset.map( |
|
tokenize_and_align_labels, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on validation dataset", |
|
) |
|
|
|
if training_args.do_predict: |
|
if "test" not in raw_datasets: |
|
raise ValueError("--do_predict requires a test dataset") |
|
predict_dataset = raw_datasets["test"] |
|
if data_args.max_predict_samples is not None: |
|
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) |
|
with training_args.main_process_first(desc="prediction dataset map pre-processing"): |
|
predict_dataset = predict_dataset.map( |
|
tokenize_and_align_labels, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on prediction dataset", |
|
) |
|
|
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None) |
|
|
|
|
|
metric = load_metric("seqeval") |
|
|
|
def compute_metrics(p): |
|
predictions, labels = p |
|
predictions = np.argmax(predictions, axis=2) |
|
|
|
|
|
true_predictions = [ |
|
[label_list[p] for (p, l) in zip(prediction, label) if l != -100] |
|
for prediction, label in zip(predictions, labels) |
|
] |
|
true_labels = [ |
|
[label_list[l] for (p, l) in zip(prediction, label) if l != -100] |
|
for prediction, label in zip(predictions, labels) |
|
] |
|
|
|
results = metric.compute(predictions=true_predictions, references=true_labels) |
|
if data_args.return_entity_level_metrics: |
|
|
|
final_results = {} |
|
for key, value in results.items(): |
|
if isinstance(value, dict): |
|
for n, v in value.items(): |
|
final_results[f"{key}_{n}"] = v |
|
else: |
|
final_results[key] = value |
|
return final_results |
|
else: |
|
return { |
|
"precision": results["overall_precision"], |
|
"recall": results["overall_recall"], |
|
"f1": results["overall_f1"], |
|
"accuracy": results["overall_accuracy"], |
|
} |
|
|
|
|
|
training_args.run_name = run_name |
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset if training_args.do_train else None, |
|
eval_dataset=eval_dataset if training_args.do_eval else None, |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
compute_metrics=compute_metrics, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
elif last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
metrics = train_result.metrics |
|
trainer.save_model() |
|
|
|
max_train_samples = ( |
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) |
|
) |
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) |
|
|
|
trainer.log_metrics("train", metrics) |
|
trainer.save_metrics("train", metrics) |
|
trainer.save_state() |
|
|
|
|
|
if training_args.do_eval: |
|
logger.info("*** Evaluate ***") |
|
|
|
metrics = trainer.evaluate() |
|
|
|
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) |
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) |
|
|
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
|
|
if training_args.do_predict: |
|
logger.info("*** Predict ***") |
|
|
|
predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict") |
|
predictions = np.argmax(predictions, axis=2) |
|
|
|
|
|
true_predictions = [ |
|
[label_list[p] for (p, l) in zip(prediction, label) if l != -100] |
|
for prediction, label in zip(predictions, labels) |
|
] |
|
|
|
trainer.log_metrics("predict", metrics) |
|
trainer.save_metrics("predict", metrics) |
|
|
|
|
|
output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt") |
|
if trainer.is_world_process_zero(): |
|
with open(output_predictions_file, "w") as writer: |
|
for prediction in true_predictions: |
|
writer.write(" ".join(prediction) + "\n") |
|
|
|
if training_args.push_to_hub: |
|
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"} |
|
if data_args.dataset_name is not None: |
|
kwargs["dataset_tags"] = data_args.dataset_name |
|
if data_args.dataset_config_name is not None: |
|
kwargs["dataset_args"] = data_args.dataset_config_name |
|
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" |
|
else: |
|
kwargs["dataset"] = data_args.dataset_name |
|
|
|
trainer.push_to_hub(**kwargs) |
|
|
|
|
|
def _mp_fn(index): |
|
|
|
main() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|