"""CONFIG""" | |
#!/usr/bin/env python3 | |
from transformers import RobertaConfig | |
config = RobertaConfig.from_pretrained("roberta-large") | |
config.save_pretrained("./") | |
"""TOKENIZER""" | |
#!/usr/bin/env python3 | |
from datasets import load_dataset | |
from tokenizers import ByteLevelBPETokenizer | |
# load dataset | |
dataset = load_dataset("large_spanish_corpus") | |
# Instantiate tokenizer | |
tokenizer = ByteLevelBPETokenizer() | |
def batch_iterator(batch_size=1000): | |
for i in range(0, len(dataset), batch_size): | |
yield dataset[i: i + batch_size]["text"] | |
# Customized training | |
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[ | |
"<s>", | |
"<pad>", | |
"</s>", | |
"<unk>", | |
"<mask>", | |
]) | |
# Save files to disk | |
tokenizer.save("./tokenizer.json") | |
"""TOKENIZER""" | |
#!/usr/bin/env bash | |
./run_mlm_flax.py \ | |
--output_dir="./" \ | |
--model_type="roberta" \ | |
--config_name="./" \ | |
--tokenizer_name="./" \ | |
--dataset_name="large_spanish_corpus" \ | |
--dataset_config_name \ # I think this would be empty | |
--max_seq_length="128" \ | |
--per_device_train_batch_size="4" \ | |
--per_device_eval_batch_size="4" \ | |
--learning_rate="3e-4" \ | |
--warmup_steps="1000" \ | |
--overwrite_output_dir \ | |
--num_train_epochs="8" \ | |
--push_to_hub | |