|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Finetuning the library models for sequence classification on GLUE.""" |
|
|
|
|
|
import logging |
|
import os |
|
import random |
|
import sys |
|
from dataclasses import dataclass, field |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import datasets |
|
import numpy as np |
|
from datasets import load_dataset, load_metric |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForSequenceClassification, |
|
AutoTokenizer, |
|
DataCollatorWithPadding, |
|
EvalPrediction, |
|
HfArgumentParser, |
|
PretrainedConfig, |
|
Trainer, |
|
TrainingArguments, |
|
default_data_collator, |
|
set_seed, |
|
) |
|
from transformers.trainer_utils import get_last_checkpoint |
|
from transformers.utils import check_min_version |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
|
|
check_min_version("4.9.0.dev0") |
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") |
|
|
|
task_to_keys = { |
|
"cola": ("sentence", None), |
|
"mnli": ("premise", "hypothesis"), |
|
"xnli": ("premise", "hypothesis"), |
|
"mrpc": ("sentence1", "sentence2"), |
|
"qnli": ("question", "sentence"), |
|
"qqp": ("question1", "question2"), |
|
"rte": ("sentence1", "sentence2"), |
|
"sst2": ("sentence", None), |
|
"stsb": ("sentence1", "sentence2"), |
|
"wnli": ("sentence1", "sentence2"), |
|
"paws-x": ("sentence1", "sentence2"), |
|
} |
|
task_to_metrics = { |
|
"paws-x": "accuracy", |
|
"xnli": "accuracy", |
|
} |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
|
|
Using `HfArgumentParser` we can turn this class |
|
into argparse arguments to be able to specify them on |
|
the command line. |
|
""" |
|
|
|
task_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())}, |
|
) |
|
dataset_name: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
max_seq_length: int = field( |
|
default=128, |
|
metadata={ |
|
"help": "The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} |
|
) |
|
pad_to_max_length: bool = field( |
|
default=True, |
|
metadata={ |
|
"help": "Whether to pad all samples to `max_seq_length`. " |
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch." |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_predict_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this " |
|
"value if set." |
|
}, |
|
) |
|
train_file: Optional[str] = field( |
|
default=None, metadata={"help": "A csv or a json file containing the training data."} |
|
) |
|
validation_file: Optional[str] = field( |
|
default=None, metadata={"help": "A csv or a json file containing the validation data."} |
|
) |
|
test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."}) |
|
|
|
def __post_init__(self): |
|
if self.task_name is not None: |
|
self.task_name = self.task_name.lower() |
|
if self.task_name not in task_to_keys.keys(): |
|
raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys())) |
|
elif self.dataset_name is not None: |
|
pass |
|
elif self.train_file is None or self.validation_file is None: |
|
raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.") |
|
else: |
|
train_extension = self.train_file.split(".")[-1] |
|
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." |
|
validation_extension = self.validation_file.split(".")[-1] |
|
assert ( |
|
validation_extension == train_extension |
|
), "`validation_file` should have the same extension (csv or json) as `train_file`." |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " |
|
"with private models)." |
|
}, |
|
) |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
log_level = training_args.get_process_log_level() |
|
logger.setLevel(log_level) |
|
datasets.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
last_checkpoint = None |
|
run_name = f"{model_args.model_name_or_path}-{np.random.randint(1000):04d}" |
|
training_args.output_dir = str(Path(training_args.output_dir) / run_name) |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.dataset_name is not None: |
|
|
|
raw_datasets = load_dataset( |
|
data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir |
|
) |
|
elif data_args.task_name is not None: |
|
|
|
raw_datasets = load_dataset("glue", data_args.task_name, cache_dir=model_args.cache_dir) |
|
else: |
|
|
|
|
|
data_files = {"train": data_args.train_file, "validation": data_args.validation_file} |
|
|
|
|
|
|
|
if training_args.do_predict: |
|
if data_args.test_file is not None: |
|
train_extension = data_args.train_file.split(".")[-1] |
|
test_extension = data_args.test_file.split(".")[-1] |
|
assert ( |
|
test_extension == train_extension |
|
), "`test_file` should have the same extension (csv or json) as `train_file`." |
|
data_files["test"] = data_args.test_file |
|
else: |
|
raise ValueError("Need either a GLUE task or a test file for `do_predict`.") |
|
|
|
for key in data_files.keys(): |
|
logger.info(f"load a local file for {key}: {data_files[key]}") |
|
|
|
if data_args.train_file.endswith(".csv"): |
|
|
|
raw_datasets = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir) |
|
else: |
|
|
|
raw_datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) |
|
|
|
|
|
|
|
|
|
if data_args.task_name is not None: |
|
is_regression = data_args.task_name == "stsb" |
|
if not is_regression: |
|
label_list = raw_datasets["train"].features["label"].names |
|
num_labels = len(label_list) |
|
else: |
|
num_labels = 1 |
|
else: |
|
|
|
is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"] |
|
if is_regression: |
|
num_labels = 1 |
|
else: |
|
|
|
|
|
label_list = raw_datasets["train"].unique("label") |
|
label_list.sort() |
|
num_labels = len(label_list) |
|
|
|
|
|
|
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path, |
|
num_labels=num_labels, |
|
finetuning_task=data_args.task_name, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
model = AutoModelForSequenceClassification.from_pretrained( |
|
model_args.model_name_or_path, |
|
from_tf=bool(".ckpt" in model_args.model_name_or_path), |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
tokenizer.model_max_length = 512 |
|
|
|
|
|
if data_args.task_name is not None: |
|
sentence1_key, sentence2_key = task_to_keys[data_args.task_name] |
|
else: |
|
|
|
non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"] |
|
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: |
|
sentence1_key, sentence2_key = "sentence1", "sentence2" |
|
else: |
|
if len(non_label_column_names) >= 2: |
|
sentence1_key, sentence2_key = non_label_column_names[:2] |
|
else: |
|
sentence1_key, sentence2_key = non_label_column_names[0], None |
|
|
|
|
|
if data_args.pad_to_max_length: |
|
padding = "max_length" |
|
else: |
|
|
|
padding = False |
|
|
|
|
|
label_to_id = None |
|
if ( |
|
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id |
|
and data_args.task_name is not None |
|
and not is_regression |
|
): |
|
|
|
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()} |
|
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)): |
|
label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)} |
|
else: |
|
logger.warning( |
|
"Your model seems to have been trained with labels, but they don't match the dataset: ", |
|
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}." |
|
"\nIgnoring the model labels as a result.", |
|
) |
|
elif data_args.task_name is None and not is_regression: |
|
label_to_id = {v: i for i, v in enumerate(label_list)} |
|
|
|
if label_to_id is not None: |
|
model.config.label2id = label_to_id |
|
model.config.id2label = {id: label for label, id in config.label2id.items()} |
|
|
|
if data_args.max_seq_length > tokenizer.model_max_length: |
|
logger.warning( |
|
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" |
|
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." |
|
) |
|
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) |
|
|
|
def preprocess_function(examples): |
|
|
|
args = ( |
|
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) |
|
) |
|
result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True) |
|
|
|
|
|
if label_to_id is not None and "label" in examples: |
|
result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]] |
|
return result |
|
|
|
with training_args.main_process_first(desc="dataset map pre-processing"): |
|
raw_datasets = raw_datasets.map( |
|
preprocess_function, |
|
batched=True, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on dataset", |
|
) |
|
if training_args.do_train: |
|
if "train" not in raw_datasets: |
|
raise ValueError("--do_train requires a train dataset") |
|
train_dataset = raw_datasets["train"] |
|
if data_args.max_train_samples is not None: |
|
train_dataset = train_dataset.select(range(data_args.max_train_samples)) |
|
|
|
if training_args.do_eval: |
|
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: |
|
raise ValueError("--do_eval requires a validation dataset") |
|
eval_dataset = raw_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"] |
|
if data_args.max_eval_samples is not None: |
|
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) |
|
|
|
if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None: |
|
if "test" not in raw_datasets and "test_matched" not in raw_datasets: |
|
raise ValueError("--do_predict requires a test dataset") |
|
predict_dataset = raw_datasets["test_matched" if data_args.task_name == "mnli" else "test"] |
|
if data_args.max_predict_samples is not None: |
|
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) |
|
|
|
|
|
if training_args.do_train: |
|
for index in random.sample(range(len(train_dataset)), 3): |
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") |
|
|
|
|
|
if data_args.task_name in task_to_metrics: |
|
metric = load_metric(task_to_metrics[data_args.task_name]) |
|
elif data_args.task_name is not None: |
|
metric = load_metric("glue", data_args.task_name) |
|
else: |
|
metric = load_metric("accuracy") |
|
|
|
|
|
|
|
def compute_metrics(p: EvalPrediction): |
|
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions |
|
preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) |
|
if data_args.task_name is not None: |
|
result = metric.compute(predictions=preds, references=p.label_ids) |
|
if len(result) > 1: |
|
result["combined_score"] = np.mean(list(result.values())).item() |
|
return result |
|
elif is_regression: |
|
return {"mse": ((preds - p.label_ids) ** 2).mean().item()} |
|
else: |
|
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()} |
|
|
|
|
|
if data_args.pad_to_max_length: |
|
data_collator = default_data_collator |
|
elif training_args.fp16: |
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) |
|
else: |
|
data_collator = None |
|
|
|
training_args.run_name = run_name |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset if training_args.do_train else None, |
|
eval_dataset=eval_dataset if training_args.do_eval else None, |
|
compute_metrics=compute_metrics, |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
elif last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
metrics = train_result.metrics |
|
max_train_samples = ( |
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) |
|
) |
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) |
|
|
|
trainer.save_model() |
|
|
|
trainer.log_metrics("train", metrics) |
|
trainer.save_metrics("train", metrics) |
|
trainer.save_state() |
|
|
|
|
|
if training_args.do_eval: |
|
logger.info("*** Evaluate ***") |
|
|
|
|
|
tasks = [data_args.task_name] |
|
eval_datasets = [eval_dataset] |
|
if data_args.task_name == "mnli": |
|
tasks.append("mnli-mm") |
|
eval_datasets.append(raw_datasets["validation_mismatched"]) |
|
|
|
for eval_dataset, task in zip(eval_datasets, tasks): |
|
metrics = trainer.evaluate(eval_dataset=eval_dataset) |
|
|
|
max_eval_samples = ( |
|
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) |
|
) |
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) |
|
|
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
if training_args.do_predict: |
|
logger.info("*** Predict ***") |
|
|
|
|
|
tasks = [data_args.task_name] |
|
predict_datasets = [predict_dataset] |
|
if data_args.task_name == "mnli": |
|
tasks.append("mnli-mm") |
|
predict_datasets.append(raw_datasets["test_mismatched"]) |
|
|
|
for predict_dataset, task in zip(predict_datasets, tasks): |
|
|
|
predict_dataset = predict_dataset.remove_columns("label") |
|
predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions |
|
predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1) |
|
|
|
output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt") |
|
if trainer.is_world_process_zero(): |
|
with open(output_predict_file, "w") as writer: |
|
logger.info(f"***** Predict results {task} *****") |
|
writer.write("index\tprediction\n") |
|
for index, item in enumerate(predictions): |
|
if is_regression: |
|
writer.write(f"{index}\t{item:3.3f}\n") |
|
else: |
|
item = label_list[item] |
|
writer.write(f"{index}\t{item}\n") |
|
|
|
if training_args.push_to_hub: |
|
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} |
|
if data_args.task_name is not None: |
|
kwargs["language"] = "en" |
|
kwargs["dataset_tags"] = "glue" |
|
kwargs["dataset_args"] = data_args.task_name |
|
kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}" |
|
|
|
trainer.push_to_hub(**kwargs) |
|
|
|
|
|
def _mp_fn(index): |
|
|
|
main() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|