bentanweihao commited on
Commit
bd66172
·
verified ·
1 Parent(s): 439627d

Training completed

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: xlm-roberta-base
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - f1
9
+ model-index:
10
+ - name: xlm-roberta-base-finetuned-panx-all
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # xlm-roberta-base-finetuned-panx-all
18
+
19
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.1758
22
+ - F1: 0.8558
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 24
43
+ - eval_batch_size: 24
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 3
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 0.299 | 1.0 | 835 | 0.2074 | 0.8078 |
54
+ | 0.1587 | 2.0 | 1670 | 0.1705 | 0.8461 |
55
+ | 0.1012 | 3.0 | 2505 | 0.1758 | 0.8558 |
56
+
57
+
58
+ ### Framework versions
59
+
60
+ - Transformers 4.44.2
61
+ - Pytorch 2.4.0+cu121
62
+ - Datasets 3.0.0
63
+ - Tokenizers 0.19.1