|
import logging |
|
from typing import List, Optional, Union |
|
|
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.image_utils import ImageInput, is_valid_image |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.tokenization_utils_base import ( |
|
AddedToken, |
|
PaddingStrategy, |
|
PreTokenizedInput, |
|
TextInput, |
|
TruncationStrategy, |
|
) |
|
from transformers.utils import TensorType |
|
from .configuration_taivisionlm import TaiVisionLMConfig |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
IMAGE_TOKEN = "<image>" |
|
|
|
|
|
|
|
def is_url(val) -> bool: |
|
return isinstance(val, str) and val.startswith("http") |
|
|
|
|
|
|
|
def is_image_or_image_url(elem): |
|
return is_url(elem) or is_valid_image(elem) |
|
|
|
|
|
def _is_str_or_image(elem): |
|
return isinstance(elem, (str)) or is_image_or_image_url(elem) |
|
|
|
|
|
def build_string_from_input(prompt, bos_token, image_seq_len, image_token): |
|
""" |
|
Builds a string from the input prompt and image tokens. |
|
For example, for the call: |
|
build_string_from_input( |
|
prompt="Prefix str" |
|
bos_token="<s>", |
|
image_seq_len=3, |
|
image_token="<im>", |
|
) |
|
The output will be: |
|
"<im><im><im><s>Initial str" |
|
Args: |
|
prompt (`List[Union[str, ImageInput]]`): The input prompt. |
|
bos_token (`str`): The beginning of sentence token. |
|
image_seq_len (`int`): The length of the image sequence. |
|
image_token (`str`): The image token. |
|
""" |
|
return f"{image_token * image_seq_len}{bos_token}{prompt}\n" |
|
|
|
|
|
class TaiVisionProcessor(ProcessorMixin): |
|
r""" |
|
Constructs a PaliGemma processor which wraps a PaliGemma image processor and a PaliGemma tokenizer into a single processor. |
|
|
|
[`PaliGemmaProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`LlamaTokenizerFast`]. See the |
|
[`~PaliGemmaProcessor.__call__`] and [`~PaliGemmaProcessor.decode`] for more information. |
|
|
|
Args: |
|
image_processor ([`SiglipImageProcessor`], *optional*): |
|
The image processor is a required input. |
|
tokenizer ([`LlamaTokenizerFast`], *optional*): |
|
The tokenizer is a required input. |
|
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages |
|
in a chat into a tokenizable string. |
|
""" |
|
|
|
attributes = ["image_processor", "tokenizer"] |
|
valid_kwargs = ["chat_template"] |
|
image_processor_class = "SiglipImageProcessor" |
|
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") |
|
|
|
def __init__( |
|
self, |
|
image_processor=None, |
|
tokenizer=None, |
|
chat_template=None, |
|
**kwargs, |
|
): |
|
if image_processor is None: |
|
raise ValueError("You need to specify an `image_processor`.") |
|
if tokenizer is None: |
|
raise ValueError("You need to specify a `tokenizer`.") |
|
if not hasattr(image_processor, "image_seq_length"): |
|
raise ValueError("Image processor is missing an `image_seq_length` attribute.") |
|
|
|
self.image_seq_length = image_processor.image_seq_length |
|
|
|
image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True) |
|
tokens_to_add = {"additional_special_tokens": [image_token]} |
|
tokenizer.add_special_tokens(tokens_to_add) |
|
self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) |
|
tokenizer.add_bos_token = False |
|
tokenizer.add_eos_token = False |
|
|
|
super().__init__(image_processor, tokenizer, chat_template=chat_template) |
|
|
|
def __call__( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, |
|
images: ImageInput = None, |
|
tokenize_newline_separately: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length=None, |
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, |
|
do_resize: bool = None, |
|
do_normalize: bool = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
data_format: Optional["ChannelDimension"] = "channels_first", |
|
input_data_format: Optional[ |
|
Union[str, "ChannelDimension"] |
|
] = None, |
|
resample: "PILImageResampling" = None, |
|
do_convert_rgb: bool = None, |
|
do_thumbnail: bool = None, |
|
do_align_long_axis: bool = None, |
|
do_rescale: bool = None, |
|
suffix: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, |
|
) -> BatchFeature: |
|
""" |
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` |
|
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode |
|
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to |
|
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring |
|
of the above two methods for more information. |
|
|
|
The usage for PaliGemma fine-tuning preparation is slightly different than usual. suffix passed are suffixes to |
|
the prompt in `text`, and will be placed after the prompt. This is because attention is handled differently for |
|
the prefix and the suffix. For instance, |
|
```python |
|
image = PIL_cow_image |
|
prompt = "answer en Where is the cow standing?" |
|
suffix = "on the beach" |
|
inputs = processor(text=prompt, images=image, suffix=suffix) |
|
``` |
|
Here `inputs` will contain the `input_ids` and `token_type_ids` that follow |
|
```python |
|
inputs["input_ids"][:, 256:] |
|
# tensor([[ 2, 6006, 603, 573, 13910, 9980, 235336, 108, 477, 573, 8318]]) |
|
inputs["token_type_ids"][:, 256:] |
|
tensor([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]]) |
|
``` |
|
Meaning the last three tokens are of "label" ("suffix") type while the other ones are of "prefix" type. |
|
|
|
|
|
Args: |
|
text (`str`, `List[str]`, `List[List[str]]`): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a |
|
number of channels, H and W are image height and width. |
|
tokenize_newline_separately (`bool`, defaults to `True`): |
|
Adds a separately tokenized '\n' at the end of the prompt. |
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): |
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding |
|
index) among: |
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum |
|
acceptable input length for the model if that argument is not provided. |
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different |
|
lengths). |
|
max_length (`int`, *optional*): |
|
Maximum length of the returned list and optionally padding length (see above). |
|
truncation (`bool`, *optional*): |
|
Activates truncation to cut input sequences longer than `max_length` to `max_length`. |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
- `'jax'`: Return JAX `jnp.ndarray` objects. |
|
suffix (`str`, `List[str]`, `List[List[str]]`): |
|
The suffixes or batch of suffixes to be encoded. Only necessary for finetuning. See https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md |
|
for more information. If your prompt is "<image> What is on the image", the suffix corresponds to the expected prediction "a cow sitting on a bench". |
|
|
|
Returns: |
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields: |
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix` |
|
is provided, the `input_ids` will also contain the suffix input ids. |
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
`None`). |
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. |
|
- **labels** -- Labels compatible with training if `suffix` is not None |
|
""" |
|
|
|
return_token_type_ids = True if suffix is not None else False |
|
|
|
if images is None: |
|
raise ValueError("`images` are expected as arguments to a `PaliGemmaProcessor` instance.") |
|
if text is None: |
|
logger.warning_once( |
|
"You are using PaliGemma without a text prefix. It will perform as a picture-captioning model." |
|
) |
|
text = "" |
|
|
|
if isinstance(text, List) and isinstance(images, List): |
|
if len(images) < len(text): |
|
raise ValueError( |
|
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image." |
|
) |
|
if _is_str_or_image(text): |
|
text = [text] |
|
elif isinstance(text, list) and _is_str_or_image(text[0]): |
|
pass |
|
if suffix is not None and _is_str_or_image(suffix): |
|
suffix = [suffix] |
|
if suffix is not None: |
|
suffix = [sfx + self.tokenizer.eos_token for sfx in suffix] |
|
|
|
input_strings = [ |
|
build_string_from_input( |
|
prompt=prompt, |
|
bos_token=self.tokenizer.bos_token, |
|
image_seq_len=self.image_seq_length, |
|
image_token=IMAGE_TOKEN, |
|
) |
|
for prompt in text |
|
] |
|
|
|
pixel_values = self.image_processor( |
|
images, |
|
do_resize=do_resize, |
|
do_normalize=do_normalize, |
|
return_tensors=return_tensors, |
|
image_mean=image_mean, |
|
image_std=image_std, |
|
input_data_format=input_data_format, |
|
data_format=data_format, |
|
resample=resample, |
|
do_convert_rgb=do_convert_rgb, |
|
)["pixel_values"] |
|
|
|
if max_length is not None: |
|
max_length += self.image_seq_length |
|
|
|
inputs = self.tokenizer( |
|
input_strings, |
|
text_pair=suffix, |
|
return_tensors=return_tensors, |
|
padding=padding, |
|
max_length=max_length, |
|
truncation=truncation, |
|
return_token_type_ids=return_token_type_ids, |
|
) |
|
|
|
return_data = {**inputs, "pixel_values": pixel_values} |
|
|
|
if return_token_type_ids: |
|
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100) |
|
return_data.update({"labels": labels}) |
|
return BatchFeature(data=return_data) |
|
|
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
|
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|