End of training
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: klue/roberta-large
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
model-index:
|
9 |
+
- name: pogny-16-0.00002
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/bella05/huggingface/runs/gi9imxak)
|
17 |
+
# pogny-16-0.00002
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.9252
|
22 |
+
- Accuracy: 0.7676
|
23 |
+
- F1: 0.7648
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 2e-05
|
43 |
+
- train_batch_size: 16
|
44 |
+
- eval_batch_size: 16
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 10
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
|
54 |
+
| 0.6579 | 1.0 | 4818 | 0.6370 | 0.7627 | 0.7604 |
|
55 |
+
| 0.5424 | 2.0 | 9636 | 0.6263 | 0.7671 | 0.7636 |
|
56 |
+
| 0.4158 | 3.0 | 14454 | 0.6761 | 0.7721 | 0.7690 |
|
57 |
+
| 0.3116 | 4.0 | 19272 | 0.7796 | 0.7705 | 0.7680 |
|
58 |
+
| 0.221 | 5.0 | 24090 | 1.0186 | 0.7640 | 0.7616 |
|
59 |
+
| 0.1605 | 6.0 | 28908 | 1.3264 | 0.7679 | 0.7648 |
|
60 |
+
| 0.122 | 7.0 | 33726 | 1.5300 | 0.7685 | 0.7642 |
|
61 |
+
| 0.0808 | 8.0 | 38544 | 1.7068 | 0.7594 | 0.7574 |
|
62 |
+
| 0.0606 | 9.0 | 43362 | 1.8555 | 0.7632 | 0.7613 |
|
63 |
+
| 0.0249 | 10.0 | 48180 | 1.9252 | 0.7676 | 0.7648 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.41.0
|
69 |
+
- Pytorch 2.2.2
|
70 |
+
- Datasets 2.19.1
|
71 |
+
- Tokenizers 0.19.1
|