bayartsogt commited on
Commit
84b5b20
1 Parent(s): 9ba7f5e

Saving weights and logs of epoch 1

Browse files
.gitattributes CHANGED
@@ -14,3 +14,4 @@
14
  *.pb filter=lfs diff=lfs merge=lfs -text
15
  *.pt filter=lfs diff=lfs merge=lfs -text
16
  *.pth filter=lfs diff=lfs merge=lfs -text
 
 
14
  *.pb filter=lfs diff=lfs merge=lfs -text
15
  *.pt filter=lfs diff=lfs merge=lfs -text
16
  *.pth filter=lfs diff=lfs merge=lfs -text
17
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "roberta",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.9.0.dev0",
22
+ "type_vocab_size": 1,
23
+ "use_cache": true,
24
+ "vocab_size": 50265
25
+ }
events.out.tfevents.1625460253.t1v-n-ca847b55-w-0.223752.3.v2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b14592f3d5c033ef71f8f184590d5601c7fb34ae48fd9ae2a42c146d6062b6a7
3
+ size 110080
flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1492e9fabddf37e34be75ab81414b608e6e56ed031572e9b58b35baf1b9514a4
3
+ size 498796983
run_config.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from transformers import RobertaConfig
2
+
3
+ model_dir = "./" # ${MODEL_DIR}
4
+
5
+ config = RobertaConfig.from_pretrained("roberta-base")
6
+ config.save_pretrained(model_dir)
7
+
run_mlm_flax.py ADDED
@@ -0,0 +1 @@
 
 
1
+ /home/bayartsogtyadamsuren/transformers/examples/flax/language-modeling/run_mlm_flax.py
run_tokenizer.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+ from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
3
+
4
+ model_dir = "./" # ${MODEL_DIR}
5
+
6
+ # load dataset
7
+ dataset = load_dataset("oscar", "unshuffled_deduplicated_mn", split="train")
8
+
9
+ # Instantiate tokenizer
10
+ tokenizer = ByteLevelBPETokenizer()
11
+
12
+ def batch_iterator(batch_size=1000):
13
+ for i in range(0, len(dataset), batch_size):
14
+ yield dataset[i: i + batch_size]["text"]
15
+
16
+ # Customized training
17
+ tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
18
+ "<s>",
19
+ "<pad>",
20
+ "</s>",
21
+ "<unk>",
22
+ "<mask>",
23
+ ])
24
+
25
+ # Save files to disk
26
+ tokenizer.save(f"{model_dir}/tokenizer.json")
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
train_mlm.sh ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ./run_mlm_flax.py \
2
+ --output_dir="${MODEL_DIR}" \
3
+ --model_type="roberta" \
4
+ --config_name="${MODEL_DIR}" \
5
+ --tokenizer_name="${MODEL_DIR}" \
6
+ --dataset_name="oscar" \
7
+ --dataset_config_name="unshuffled_deduplicated_mn" \
8
+ --max_seq_length="128" \
9
+ --weight_decay="0.01" \
10
+ --per_device_train_batch_size="128" \
11
+ --per_device_eval_batch_size="128" \
12
+ --learning_rate="3e-4" \
13
+ --warmup_steps="1000" \
14
+ --overwrite_output_dir \
15
+ --pad_to_max_length \
16
+ --num_train_epochs="18" \
17
+ --adam_beta1="0.9" \
18
+ --adam_beta2="0.98" \
19
+ --push_to_hub