add ignored datset files
Browse files- script/inference.py +1 -1
- script/train.py +4 -4
- script/visualization/visualize.py +1 -1
- src/dataset/dataset.py +59 -0
- src/dataset/video_utils.py +132 -0
script/inference.py
CHANGED
@@ -6,7 +6,7 @@ sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
|
6 |
|
7 |
from src.utils.utils import get_latest_run_dir, get_latest_model_path, get_config
|
8 |
from src.models.model import load_model
|
9 |
-
from src.
|
10 |
|
11 |
def setup_model(run_dir=None):
|
12 |
"""Setup model and configuration"""
|
|
|
6 |
|
7 |
from src.utils.utils import get_latest_run_dir, get_latest_model_path, get_config
|
8 |
from src.models.model import load_model
|
9 |
+
from src.dataset.video_utils import create_transform, extract_frames
|
10 |
|
11 |
def setup_model(run_dir=None):
|
12 |
"""Setup model and configuration"""
|
script/train.py
CHANGED
@@ -12,9 +12,9 @@ import sys
|
|
12 |
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
13 |
|
14 |
from src.utils.utils import create_run_directory
|
15 |
-
from src.
|
16 |
from src.models.model import create_model
|
17 |
-
from src.
|
18 |
|
19 |
def train_and_evaluate(config):
|
20 |
# Create a run directory if it doesn't exist
|
@@ -228,11 +228,11 @@ def main():
|
|
228 |
config = {
|
229 |
"class_labels": class_labels,
|
230 |
"num_classes": len(class_labels),
|
231 |
-
"data_path": '../finetune/
|
232 |
"batch_size": 32,
|
233 |
"learning_rate": 2e-6,
|
234 |
"weight_decay": 0.007,
|
235 |
-
"num_epochs":
|
236 |
"patience": 10, # for early stopping
|
237 |
"max_frames": 10,
|
238 |
"sigma": 0.3,
|
|
|
12 |
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
13 |
|
14 |
from src.utils.utils import create_run_directory
|
15 |
+
from src.dataset.dataset import VideoDataset
|
16 |
from src.models.model import create_model
|
17 |
+
from src.dataset.video_utils import create_transform
|
18 |
|
19 |
def train_and_evaluate(config):
|
20 |
# Create a run directory if it doesn't exist
|
|
|
228 |
config = {
|
229 |
"class_labels": class_labels,
|
230 |
"num_classes": len(class_labels),
|
231 |
+
"data_path": '../finetune/3moves_otherpeopleval',
|
232 |
"batch_size": 32,
|
233 |
"learning_rate": 2e-6,
|
234 |
"weight_decay": 0.007,
|
235 |
+
"num_epochs": 50,
|
236 |
"patience": 10, # for early stopping
|
237 |
"max_frames": 10,
|
238 |
"sigma": 0.3,
|
script/visualization/visualize.py
CHANGED
@@ -9,7 +9,7 @@ import os
|
|
9 |
import sys
|
10 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
|
11 |
|
12 |
-
from src.
|
13 |
from src.utils.utils import get_latest_model_path, get_latest_run_dir, get_config
|
14 |
from src.models.model import load_model
|
15 |
|
|
|
9 |
import sys
|
10 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
|
11 |
|
12 |
+
from src.dataset.dataset import VideoDataset
|
13 |
from src.utils.utils import get_latest_model_path, get_latest_run_dir, get_config
|
14 |
from src.models.model import load_model
|
15 |
|
src/dataset/dataset.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import Dataset
|
3 |
+
import csv
|
4 |
+
from .video_utils import create_transform, extract_frames
|
5 |
+
|
6 |
+
class VideoDataset(Dataset):
|
7 |
+
def __init__(self, file_path, config, transform=None):
|
8 |
+
self.data = []
|
9 |
+
self.label_map = {}
|
10 |
+
# Use create_transform if no custom transform is provided
|
11 |
+
self.transform = transform or create_transform(config)
|
12 |
+
|
13 |
+
# Validate required config keys
|
14 |
+
required_keys = {"max_frames", "sigma", "class_labels"}
|
15 |
+
missing_keys = required_keys - set(config.keys())
|
16 |
+
if missing_keys:
|
17 |
+
raise ValueError(f"Missing required config keys: {missing_keys}")
|
18 |
+
|
19 |
+
self.max_frames = config['max_frames']
|
20 |
+
self.sigma = config['sigma']
|
21 |
+
|
22 |
+
# Create label map from class_labels list
|
23 |
+
self.label_map = {i: label for i, label in enumerate(config['class_labels'])}
|
24 |
+
|
25 |
+
# Read the CSV file and parse the data
|
26 |
+
with open(file_path, 'r') as file:
|
27 |
+
csv_reader = csv.reader(file)
|
28 |
+
for row in csv_reader:
|
29 |
+
if len(row) != 2:
|
30 |
+
print(f"Skipping invalid row: {row}")
|
31 |
+
continue
|
32 |
+
video_path, label = row
|
33 |
+
try:
|
34 |
+
label = int(label)
|
35 |
+
except ValueError:
|
36 |
+
print(f"Skipping row with invalid label: {row}")
|
37 |
+
continue
|
38 |
+
self.data.append((video_path, label))
|
39 |
+
|
40 |
+
if not self.data:
|
41 |
+
raise ValueError(f"No valid data found in the CSV file: {file_path}")
|
42 |
+
|
43 |
+
def __len__(self):
|
44 |
+
return len(self.data)
|
45 |
+
|
46 |
+
def __getitem__(self, idx):
|
47 |
+
video_path, label = self.data[idx]
|
48 |
+
|
49 |
+
frames, success = extract_frames(video_path,
|
50 |
+
{"max_frames": self.max_frames, "sigma": self.sigma},
|
51 |
+
self.transform)
|
52 |
+
|
53 |
+
if not success:
|
54 |
+
frames = self._get_error_tensor()
|
55 |
+
|
56 |
+
return frames, label, video_path
|
57 |
+
|
58 |
+
def _get_error_tensor(self):
|
59 |
+
return torch.zeros((self.max_frames, 3, 224, 224))
|
src/dataset/video_utils.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
from scipy.stats import norm
|
6 |
+
import os
|
7 |
+
|
8 |
+
def create_transform(config, training=False):
|
9 |
+
"""Create transform pipeline based on config"""
|
10 |
+
# Validate base required keys
|
11 |
+
required_keys = {
|
12 |
+
"image_size",
|
13 |
+
"normalization_mean",
|
14 |
+
"normalization_std"
|
15 |
+
}
|
16 |
+
|
17 |
+
# Add training-specific required keys
|
18 |
+
if training:
|
19 |
+
required_keys.update({
|
20 |
+
"flip_probability",
|
21 |
+
"rotation_degrees",
|
22 |
+
"brightness_jitter",
|
23 |
+
"contrast_jitter",
|
24 |
+
"saturation_jitter",
|
25 |
+
"hue_jitter",
|
26 |
+
"crop_scale_min",
|
27 |
+
"crop_scale_max"
|
28 |
+
})
|
29 |
+
|
30 |
+
missing_keys = required_keys - set(config.keys())
|
31 |
+
if missing_keys:
|
32 |
+
raise ValueError(f"Missing required config keys: {missing_keys}")
|
33 |
+
|
34 |
+
# Build transform list
|
35 |
+
transform_list = [
|
36 |
+
transforms.ToPILImage(),
|
37 |
+
transforms.Resize((config["image_size"], config["image_size"]))
|
38 |
+
]
|
39 |
+
|
40 |
+
# Add training augmentations if needed
|
41 |
+
if training:
|
42 |
+
transform_list.extend([
|
43 |
+
transforms.RandomHorizontalFlip(p=config["flip_probability"]),
|
44 |
+
transforms.RandomRotation(config["rotation_degrees"]),
|
45 |
+
transforms.ColorJitter(
|
46 |
+
brightness=config["brightness_jitter"],
|
47 |
+
contrast=config["contrast_jitter"],
|
48 |
+
saturation=config["saturation_jitter"],
|
49 |
+
hue=config["hue_jitter"]
|
50 |
+
),
|
51 |
+
transforms.RandomResizedCrop(
|
52 |
+
config["image_size"],
|
53 |
+
scale=(config["crop_scale_min"], config["crop_scale_max"])
|
54 |
+
)
|
55 |
+
])
|
56 |
+
|
57 |
+
# Add final transforms
|
58 |
+
transform_list.extend([
|
59 |
+
transforms.ToTensor(),
|
60 |
+
transforms.Normalize(
|
61 |
+
mean=config["normalization_mean"],
|
62 |
+
std=config["normalization_std"]
|
63 |
+
)
|
64 |
+
])
|
65 |
+
|
66 |
+
return transforms.Compose(transform_list)
|
67 |
+
|
68 |
+
def extract_frames(video_path: str, config: dict, transform) -> tuple[torch.Tensor, bool]:
|
69 |
+
"""Extract and process frames from video using Gaussian sampling
|
70 |
+
Returns:
|
71 |
+
tuple: (frames tensor, success boolean)
|
72 |
+
"""
|
73 |
+
# Validate required config keys
|
74 |
+
required_keys = {"max_frames", "sigma"}
|
75 |
+
missing_keys = required_keys - set(config.keys())
|
76 |
+
if missing_keys:
|
77 |
+
raise ValueError(f"Missing required config keys for frame extraction: {missing_keys}")
|
78 |
+
|
79 |
+
frames = []
|
80 |
+
success = True
|
81 |
+
|
82 |
+
if not os.path.exists(video_path):
|
83 |
+
print(f"File not found: {video_path}")
|
84 |
+
return None, False
|
85 |
+
|
86 |
+
cap = cv2.VideoCapture(video_path)
|
87 |
+
if not cap.isOpened():
|
88 |
+
print(f"Failed to open video: {video_path}")
|
89 |
+
return None, False
|
90 |
+
|
91 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
92 |
+
if total_frames == 0:
|
93 |
+
print(f"Video has no frames: {video_path}")
|
94 |
+
cap.release()
|
95 |
+
return None, False
|
96 |
+
|
97 |
+
# Create a normal distribution centered at the middle of the video
|
98 |
+
x = np.linspace(0, 1, total_frames)
|
99 |
+
probabilities = norm.pdf(x, loc=0.5, scale=config["sigma"])
|
100 |
+
probabilities /= probabilities.sum()
|
101 |
+
|
102 |
+
# Sample frame indices based on this distribution
|
103 |
+
frame_indices = np.sort(np.random.choice(
|
104 |
+
total_frames,
|
105 |
+
size=min(config["max_frames"], total_frames),
|
106 |
+
replace=False,
|
107 |
+
p=probabilities
|
108 |
+
))
|
109 |
+
|
110 |
+
for frame_idx in frame_indices:
|
111 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_idx)
|
112 |
+
ret, frame = cap.read()
|
113 |
+
if not ret:
|
114 |
+
print(f"Failed to read frame {frame_idx} from video: {video_path}")
|
115 |
+
success = False
|
116 |
+
break
|
117 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
118 |
+
if transform:
|
119 |
+
frame = transform(frame)
|
120 |
+
frames.append(frame)
|
121 |
+
|
122 |
+
cap.release()
|
123 |
+
|
124 |
+
if not frames:
|
125 |
+
print(f"No frames extracted from video: {video_path}")
|
126 |
+
return None, False
|
127 |
+
|
128 |
+
# Pad with zeros if we don't have enough frames
|
129 |
+
while len(frames) < config["max_frames"]:
|
130 |
+
frames.append(torch.zeros_like(frames[0]))
|
131 |
+
|
132 |
+
return torch.stack(frames), success
|