read bloag dataset better
Browse files- .gitignore +2 -0
- script/hyperparameter_tuning.py +204 -38
- script/train.py +278 -211
- script/visualization/visualize.py +22 -13
- src/dataset/dataset.py +3 -1
.gitignore
CHANGED
@@ -35,6 +35,8 @@ ENV/
|
|
35 |
|
36 |
# Project specific
|
37 |
runs/
|
|
|
|
|
38 |
checkpoints/
|
39 |
*.pth
|
40 |
*.ckpt
|
|
|
35 |
|
36 |
# Project specific
|
37 |
runs/
|
38 |
+
outputs/
|
39 |
+
runs_hyperparam/
|
40 |
checkpoints/
|
41 |
*.pth
|
42 |
*.ckpt
|
script/hyperparameter_tuning.py
CHANGED
@@ -1,24 +1,39 @@
|
|
1 |
import optuna
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
import os
|
5 |
import sys
|
6 |
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
7 |
from script.train import train_and_evaluate
|
8 |
from src.utils.utils import create_run_directory
|
9 |
|
10 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
config = {
|
12 |
-
"clip_model":
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"gradient_clip_max_norm": trial.
|
18 |
"augmentation_strength": trial.suggest_float("augmentation_strength", 0.0, 1.0),
|
19 |
"crop_scale_min": trial.suggest_float("crop_scale_min", 0.6, 0.9),
|
20 |
"max_frames": trial.suggest_int("max_frames", 5, 15),
|
21 |
-
"sigma": trial.
|
22 |
}
|
23 |
|
24 |
class_labels = ["windmill", "halo", "swipe", "baby_mill"][:3]
|
@@ -27,9 +42,9 @@ def objective(trial, hyperparam_run_dir):
|
|
27 |
config.update({
|
28 |
"class_labels": class_labels,
|
29 |
"num_classes": len(class_labels),
|
30 |
-
"data_path":
|
31 |
-
"num_epochs": 50,
|
32 |
-
"patience": 10,
|
33 |
"image_size": 224,
|
34 |
"crop_scale_max": 1.0,
|
35 |
"normalization_mean": [0.485, 0.456, 0.406],
|
@@ -37,7 +52,7 @@ def objective(trial, hyperparam_run_dir):
|
|
37 |
"overfitting_threshold": 10,
|
38 |
})
|
39 |
|
40 |
-
# Derive augmentation parameters
|
41 |
config.update({
|
42 |
"flip_probability": 0.5 * config["augmentation_strength"],
|
43 |
"rotation_degrees": int(15 * config["augmentation_strength"]),
|
@@ -47,33 +62,184 @@ def objective(trial, hyperparam_run_dir):
|
|
47 |
"hue_jitter": 0.1 * config["augmentation_strength"],
|
48 |
})
|
49 |
|
50 |
-
# Create
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
def main():
|
58 |
-
# Set up the study and optimize
|
59 |
-
hyperparam_run_dir = create_run_directory(suffix='_hyperparam')
|
60 |
-
study = optuna.create_study(direction="maximize")
|
61 |
-
study.optimize(lambda trial: objective(trial, hyperparam_run_dir), n_trials=100) # Adjust the number of trials as needed
|
62 |
|
63 |
-
# Save the study results
|
64 |
-
study.trials_dataframe().to_csv(os.path.join(hyperparam_run_dir, 'study_results.csv'))
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
if __name__ == "__main__":
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import optuna
|
2 |
import os
|
3 |
+
from datetime import datetime
|
4 |
+
import pandas as pd
|
5 |
+
from pathlib import Path
|
6 |
+
import json
|
7 |
+
import math
|
8 |
|
|
|
9 |
import sys
|
10 |
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
11 |
from script.train import train_and_evaluate
|
12 |
from src.utils.utils import create_run_directory
|
13 |
|
14 |
+
def create_hyperparam_directory():
|
15 |
+
"""Create a parent directory for all hyperparameter searches"""
|
16 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
17 |
+
base_dir = "runs_hyperparam"
|
18 |
+
hyperparam_dir = os.path.join(base_dir, f"hyperparam_{timestamp}")
|
19 |
+
os.makedirs(hyperparam_dir, exist_ok=True)
|
20 |
+
return hyperparam_dir
|
21 |
+
|
22 |
+
def objective(trial, hyperparam_run_dir, data_path):
|
23 |
+
"""Objective function for a single dataset"""
|
24 |
+
|
25 |
+
# Then suggest parameters using the model-specific ranges
|
26 |
config = {
|
27 |
+
"clip_model": trial.suggest_categorical("clip_model", ["openai/clip-vit-base-patch32", "openai/clip-vit-large-patch14"]),
|
28 |
+
"batch_size": trial.suggest_categorical("batch_size", [8,16,32]),
|
29 |
+
"unfreeze_layers": trial.suggest_int("unfreeze_layers", 1, 4),
|
30 |
+
"learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
|
31 |
+
"weight_decay": trial.suggest_float("weight_decay", 1e-8, 1e-1, log=True),
|
32 |
+
"gradient_clip_max_norm": trial.suggest_float("gradient_clip_max_norm", 0.1, 1.0),
|
33 |
"augmentation_strength": trial.suggest_float("augmentation_strength", 0.0, 1.0),
|
34 |
"crop_scale_min": trial.suggest_float("crop_scale_min", 0.6, 0.9),
|
35 |
"max_frames": trial.suggest_int("max_frames", 5, 15),
|
36 |
+
"sigma": trial.suggest_float("sigma", 0.1, 0.5),
|
37 |
}
|
38 |
|
39 |
class_labels = ["windmill", "halo", "swipe", "baby_mill"][:3]
|
|
|
42 |
config.update({
|
43 |
"class_labels": class_labels,
|
44 |
"num_classes": len(class_labels),
|
45 |
+
"data_path": data_path,
|
46 |
+
"num_epochs": 50,
|
47 |
+
"patience": 10,
|
48 |
"image_size": 224,
|
49 |
"crop_scale_max": 1.0,
|
50 |
"normalization_mean": [0.485, 0.456, 0.406],
|
|
|
52 |
"overfitting_threshold": 10,
|
53 |
})
|
54 |
|
55 |
+
# Derive augmentation parameters
|
56 |
config.update({
|
57 |
"flip_probability": 0.5 * config["augmentation_strength"],
|
58 |
"rotation_degrees": int(15 * config["augmentation_strength"]),
|
|
|
62 |
"hue_jitter": 0.1 * config["augmentation_strength"],
|
63 |
})
|
64 |
|
65 |
+
# Create dataset-specific run directory
|
66 |
+
dataset_label = '_'.join(Path(data_path).parts[-2:]) # Get last two parts of path
|
67 |
+
trial_dir = create_run_directory(
|
68 |
+
prefix=f"trial_{dataset_label}",
|
69 |
+
parent_dir=hyperparam_run_dir
|
70 |
+
)
|
71 |
+
config["run_dir"] = trial_dir
|
|
|
|
|
|
|
|
|
|
|
72 |
|
|
|
|
|
73 |
|
74 |
+
# Run training and evaluation with device cleanup
|
75 |
+
try:
|
76 |
+
val_accuracy, vis_dir = train_and_evaluate(config)
|
77 |
+
|
78 |
+
if val_accuracy is None or math.isnan(val_accuracy) or math.isinf(val_accuracy):
|
79 |
+
raise ValueError(f"Invalid accuracy value: {val_accuracy}")
|
80 |
+
|
81 |
+
# Save trial info
|
82 |
+
trial_info = {
|
83 |
+
'dataset': data_path,
|
84 |
+
'dataset_label': dataset_label,
|
85 |
+
'trial_number': trial.number,
|
86 |
+
'parameters': trial.params,
|
87 |
+
'value': val_accuracy,
|
88 |
+
'visualization_dir': vis_dir
|
89 |
+
}
|
90 |
+
|
91 |
+
with open(os.path.join(trial_dir, 'trial_info.json'), 'w') as f:
|
92 |
+
json.dump(trial_info, f, indent=4)
|
93 |
+
|
94 |
+
return val_accuracy
|
95 |
+
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Error in trial for {data_path}: {str(e)}")
|
98 |
+
# Log detailed error information
|
99 |
+
error_log_path = os.path.join(hyperparam_run_dir, 'error_log.txt')
|
100 |
+
with open(error_log_path, 'a') as f:
|
101 |
+
f.write(f"\nError in trial at {datetime.now()}:\n")
|
102 |
+
f.write(f"Dataset: {data_path}\n")
|
103 |
+
f.write(f"Error: {str(e)}\n")
|
104 |
+
f.write(f"Trial params: {trial.params}\n")
|
105 |
+
f.write("Stack trace:\n")
|
106 |
+
import traceback
|
107 |
+
f.write(traceback.format_exc())
|
108 |
+
f.write("\n" + "="*50 + "\n")
|
109 |
+
|
110 |
+
return float('-inf')
|
111 |
|
112 |
+
def run_hyperparameter_search(data_paths, n_trials=100):
|
113 |
+
"""Run hyperparameter search for multiple datasets"""
|
114 |
+
|
115 |
+
# Create parent directory for all searches
|
116 |
+
parent_hyperparam_dir = create_hyperparam_directory()
|
117 |
+
|
118 |
+
# Store results for all datasets
|
119 |
+
all_results = {}
|
120 |
+
|
121 |
+
for data_path in data_paths:
|
122 |
+
print(f"\nStarting hyperparameter search for dataset: {data_path}")
|
123 |
+
|
124 |
+
# Create dataset-specific directory
|
125 |
+
dataset_label = '_'.join(Path(data_path).parts[-2:])
|
126 |
+
dataset_dir = os.path.join(parent_hyperparam_dir, f"search_{dataset_label}")
|
127 |
+
os.makedirs(dataset_dir, exist_ok=True)
|
128 |
+
|
129 |
+
# Create and run study with explicit trial count tracking
|
130 |
+
study = optuna.create_study(direction="maximize")
|
131 |
+
completed_trials = 0
|
132 |
+
failed_trials = []
|
133 |
+
total_attempts = 0
|
134 |
+
max_attempts = n_trials * 2
|
135 |
+
while completed_trials < n_trials and total_attempts < max_attempts:
|
136 |
+
try:
|
137 |
+
total_attempts += 1
|
138 |
+
study.optimize(
|
139 |
+
lambda trial: objective(trial, dataset_dir, data_path),
|
140 |
+
n_trials=1
|
141 |
+
)
|
142 |
+
# Only increment if the trial actually succeeded
|
143 |
+
if study.trials[-1].value != float('-inf'):
|
144 |
+
completed_trials += 1
|
145 |
+
print(f"Completed trial {completed_trials}/{n_trials} for {dataset_label}")
|
146 |
+
else:
|
147 |
+
error_info = {
|
148 |
+
'trial_number': completed_trials + len(failed_trials) + 1,
|
149 |
+
'error': "Trial returned -inf",
|
150 |
+
'timestamp': datetime.now().isoformat()
|
151 |
+
}
|
152 |
+
failed_trials.append(error_info)
|
153 |
+
print(f"Failed trial for {dataset_label}: returned -inf")
|
154 |
+
|
155 |
+
except Exception as e:
|
156 |
+
error_info = {
|
157 |
+
'trial_number': completed_trials + len(failed_trials) + 1,
|
158 |
+
'error': str(e),
|
159 |
+
'timestamp': datetime.now().isoformat()
|
160 |
+
}
|
161 |
+
failed_trials.append(error_info)
|
162 |
+
print(f"Error in trial for {dataset_label}: {str(e)}")
|
163 |
+
|
164 |
+
# Log the error
|
165 |
+
with open(os.path.join(dataset_dir, 'failed_trials.json'), 'w') as f:
|
166 |
+
json.dump(failed_trials, f, indent=4)
|
167 |
+
if total_attempts >= max_attempts:
|
168 |
+
print(f"Warning: Reached maximum attempts ({max_attempts}) for {dataset_label}")
|
169 |
+
|
170 |
+
# Save study results
|
171 |
+
results_df = study.trials_dataframe()
|
172 |
+
results_df.to_csv(os.path.join(dataset_dir, 'study_results.csv'))
|
173 |
+
|
174 |
+
# Save trial statistics
|
175 |
+
trial_stats = {
|
176 |
+
'completed_trials': completed_trials,
|
177 |
+
'failed_trials': len(failed_trials),
|
178 |
+
'total_attempts': completed_trials + len(failed_trials)
|
179 |
+
}
|
180 |
+
with open(os.path.join(dataset_dir, 'trial_statistics.json'), 'w') as f:
|
181 |
+
json.dump(trial_stats, f, indent=4)
|
182 |
+
|
183 |
+
# Save best trial info
|
184 |
+
best_trial = study.best_trial
|
185 |
+
best_params_path = os.path.join(dataset_dir, 'best_params.txt')
|
186 |
+
with open(best_params_path, 'w') as f:
|
187 |
+
f.write(f"Best trial value: {best_trial.value}\n\n")
|
188 |
+
f.write("Best parameters:\n")
|
189 |
+
for key, value in best_trial.params.items():
|
190 |
+
f.write(f"{key}: {value}\n")
|
191 |
+
|
192 |
+
# Store results
|
193 |
+
all_results[data_path] = {
|
194 |
+
'best_value': best_trial.value,
|
195 |
+
'best_params': best_trial.params,
|
196 |
+
'study': study,
|
197 |
+
'results_df': results_df,
|
198 |
+
'failed_trials': failed_trials,
|
199 |
+
'trial_stats': trial_stats
|
200 |
+
}
|
201 |
+
|
202 |
+
print(f"\nResults for {data_path}:")
|
203 |
+
print(f"Completed trials: {completed_trials}")
|
204 |
+
print(f"Failed trials: {len(failed_trials)}")
|
205 |
+
print(f"Best trial value: {best_trial.value}")
|
206 |
+
print("Best parameters:")
|
207 |
+
for key, value in best_trial.params.items():
|
208 |
+
print(f" {key}: {value}")
|
209 |
+
|
210 |
+
# Create overall summary with additional statistics
|
211 |
+
summary_data = []
|
212 |
+
for data_path, result in all_results.items():
|
213 |
+
summary_data.append({
|
214 |
+
'dataset': data_path,
|
215 |
+
'best_accuracy': result['best_value'],
|
216 |
+
'completed_trials': result['trial_stats']['completed_trials'],
|
217 |
+
'failed_trials': result['trial_stats']['failed_trials'],
|
218 |
+
**result['best_params']
|
219 |
+
})
|
220 |
+
|
221 |
+
summary_df = pd.DataFrame(summary_data)
|
222 |
+
summary_df.to_csv(os.path.join(parent_hyperparam_dir, 'overall_summary.csv'), index=False)
|
223 |
+
|
224 |
+
return parent_hyperparam_dir, all_results
|
225 |
|
226 |
if __name__ == "__main__":
|
227 |
+
# List of dataset paths to optimize
|
228 |
+
data_paths = [
|
229 |
+
'../finetune/blog/bryant/random',
|
230 |
+
'../finetune/blog/bryant/adjusted',
|
231 |
+
'../finetune/blog/youtube/random',
|
232 |
+
'../finetune/blog/youtube/adjusted',
|
233 |
+
'../finetune/blog/combined/random',
|
234 |
+
'../finetune/blog/combined/adjusted',
|
235 |
+
'../finetune/blog/bryant_train_youtube_val/default'
|
236 |
+
]
|
237 |
+
|
238 |
+
# Run hyperparameter search
|
239 |
+
hyperparam_dir, results = run_hyperparameter_search(
|
240 |
+
data_paths,
|
241 |
+
n_trials=8 # Adjust as needed
|
242 |
+
)
|
243 |
+
|
244 |
+
print(f"\nHyperparameter search complete!")
|
245 |
+
print(f"Results are saved in: {hyperparam_dir}")
|
script/train.py
CHANGED
@@ -7,6 +7,7 @@ import logging
|
|
7 |
import csv
|
8 |
import json
|
9 |
from torch.optim.lr_scheduler import CosineAnnealingLR
|
|
|
10 |
|
11 |
import sys
|
12 |
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
@@ -15,209 +16,253 @@ from src.utils.utils import create_run_directory
|
|
15 |
from src.dataset.dataset import VideoDataset
|
16 |
from src.models.model import create_model
|
17 |
from src.dataset.video_utils import create_transform
|
|
|
|
|
18 |
|
19 |
def train_and_evaluate(config):
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
# Update paths based on run_dir
|
25 |
-
config.update({
|
26 |
-
"best_model_path": os.path.join(config["run_dir"], 'best_model.pth'),
|
27 |
-
"final_model_path": os.path.join(config["run_dir"], 'final_model.pth'),
|
28 |
-
"csv_path": os.path.join(config["run_dir"], 'training_log.csv'),
|
29 |
-
"misclassifications_dir": os.path.join(config["run_dir"], 'misclassifications'),
|
30 |
-
})
|
31 |
-
|
32 |
-
config_path = os.path.join(config["run_dir"], 'config.json')
|
33 |
-
with open(config_path, 'w') as f:
|
34 |
-
json.dump(config, f, indent=2)
|
35 |
-
|
36 |
-
# Set up logging
|
37 |
-
logging.basicConfig(level=logging.INFO,
|
38 |
-
format='%(asctime)s - %(levelname)s - %(message)s',
|
39 |
-
handlers=[logging.FileHandler(os.path.join(config["run_dir"], 'training.log')),
|
40 |
-
logging.StreamHandler()])
|
41 |
-
logger = logging.getLogger(__name__)
|
42 |
-
|
43 |
-
# Set device
|
44 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
-
logger.info(f"Using device: {device}")
|
46 |
-
|
47 |
-
# Initialize variables
|
48 |
-
best_val_loss = float('inf')
|
49 |
-
epochs_without_improvement = 0
|
50 |
-
|
51 |
-
model = create_model(config["num_classes"], config["clip_model"])
|
52 |
-
|
53 |
-
# Unfreeze the last 2 layers of the vision encoder
|
54 |
-
model.unfreeze_vision_encoder(num_layers=config["unfreeze_layers"])
|
55 |
-
|
56 |
-
# Move model to device
|
57 |
-
model = model.to(device)
|
58 |
-
logger.info(f"Model architecture:\n{model}")
|
59 |
-
|
60 |
-
# Load datasets
|
61 |
-
train_dataset = VideoDataset(
|
62 |
-
os.path.join(config['data_path'], 'train.csv'),
|
63 |
-
config=config
|
64 |
-
)
|
65 |
-
|
66 |
-
# For validation, create a new config with training=False for transforms
|
67 |
-
val_config = config.copy()
|
68 |
-
val_dataset = VideoDataset(
|
69 |
-
os.path.join(config['data_path'], 'val.csv'),
|
70 |
-
config=val_config,
|
71 |
-
transform=create_transform(config, training=False)
|
72 |
-
)
|
73 |
-
|
74 |
-
# Create data loaders
|
75 |
-
train_loader = DataLoader(train_dataset, batch_size=config["batch_size"], shuffle=True)
|
76 |
-
val_loader = DataLoader(val_dataset, batch_size=config["batch_size"], shuffle=False)
|
77 |
-
|
78 |
-
# Define optimizer and learning rate scheduler
|
79 |
-
optimizer = torch.optim.AdamW(model.parameters(), lr=config["learning_rate"], weight_decay=config["weight_decay"])
|
80 |
-
scheduler = CosineAnnealingLR(optimizer, T_max=config["num_epochs"])
|
81 |
-
|
82 |
-
# Open a CSV file to log training progress
|
83 |
-
with open(config["csv_path"], 'w', newline='') as file:
|
84 |
-
writer = csv.writer(file)
|
85 |
-
writer.writerow(["epoch", "train_loss", "train_accuracy", "val_loss", "val_accuracy"])
|
86 |
-
|
87 |
-
# Function to calculate accuracy
|
88 |
-
def calculate_accuracy(outputs, labels):
|
89 |
-
_, predicted = torch.max(outputs, 1)
|
90 |
-
correct = (predicted == labels).sum().item()
|
91 |
-
total = labels.size(0)
|
92 |
-
return correct / total
|
93 |
-
|
94 |
-
def log_misclassifications(outputs, labels, video_paths, dataset, misclassified_videos):
|
95 |
-
_, predicted = torch.max(outputs, 1)
|
96 |
-
for pred, label, video_path in zip(predicted, labels, video_paths):
|
97 |
-
if pred != label:
|
98 |
-
true_label = dataset.label_map[label.item()]
|
99 |
-
predicted_label = dataset.label_map[pred.item()]
|
100 |
-
misclassified_videos.append({
|
101 |
-
'video_path': video_path,
|
102 |
-
'true_label': true_label,
|
103 |
-
'predicted_label': predicted_label
|
104 |
-
})
|
105 |
-
|
106 |
-
# Create a subfolder for misclassification logs
|
107 |
-
os.makedirs(config["misclassifications_dir"], exist_ok=True)
|
108 |
-
|
109 |
-
# Training loop
|
110 |
-
for epoch in range(config["num_epochs"]):
|
111 |
-
model.train()
|
112 |
-
total_loss = 0
|
113 |
-
total_accuracy = 0
|
114 |
-
for frames, labels, video_paths in tqdm(train_loader, desc=f"Epoch {epoch + 1}/{config['num_epochs']}"):
|
115 |
-
frames = frames.to(device)
|
116 |
-
labels = labels.to(device)
|
117 |
-
|
118 |
-
logits = model(frames)
|
119 |
-
|
120 |
-
loss = torch.nn.functional.cross_entropy(logits, labels)
|
121 |
-
accuracy = calculate_accuracy(logits, labels)
|
122 |
-
|
123 |
-
optimizer.zero_grad()
|
124 |
-
loss.backward()
|
125 |
-
clip_grad_norm_(model.parameters(), max_norm=config["gradient_clip_max_norm"])
|
126 |
-
optimizer.step()
|
127 |
-
|
128 |
-
total_loss += loss.item()
|
129 |
-
total_accuracy += accuracy
|
130 |
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
#
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
frames = frames.to(device)
|
142 |
labels = labels.to(device)
|
143 |
|
144 |
logits = model(frames)
|
145 |
|
146 |
-
loss =
|
147 |
accuracy = calculate_accuracy(logits, labels)
|
148 |
|
149 |
-
|
150 |
-
|
|
|
|
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
-
|
|
|
|
|
|
|
|
|
219 |
|
220 |
-
|
|
|
|
|
|
|
|
|
221 |
|
222 |
def main():
|
223 |
# Create run directory
|
@@ -228,35 +273,57 @@ def main():
|
|
228 |
config = {
|
229 |
"class_labels": class_labels,
|
230 |
"num_classes": len(class_labels),
|
231 |
-
"
|
232 |
"batch_size": 32,
|
233 |
-
"
|
234 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
"num_epochs": 50,
|
236 |
-
"patience": 10,
|
237 |
-
"max_frames": 10,
|
238 |
-
"sigma": 0.3,
|
239 |
"image_size": 224,
|
240 |
-
"flip_probability": 0.5,
|
241 |
-
"rotation_degrees": 15,
|
242 |
-
"brightness_jitter": 0.2,
|
243 |
-
"contrast_jitter": 0.2,
|
244 |
-
"saturation_jitter": 0.2,
|
245 |
-
"hue_jitter": 0.1,
|
246 |
-
"crop_scale_min": 0.8,
|
247 |
"crop_scale_max": 1.0,
|
248 |
-
"normalization_mean": [
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
"
|
|
|
|
|
|
|
|
|
254 |
"overfitting_threshold": 10,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
"run_dir": run_dir,
|
256 |
-
"best_model_path": os.path.join(run_dir, 'best_model.pth'),
|
257 |
-
"final_model_path": os.path.join(run_dir, 'final_model.pth'),
|
258 |
-
"csv_path": os.path.join(run_dir, 'training_log.csv'),
|
259 |
-
"misclassifications_dir": os.path.join(run_dir, 'misclassifications'),
|
260 |
}
|
261 |
train_and_evaluate(config)
|
262 |
|
|
|
7 |
import csv
|
8 |
import json
|
9 |
from torch.optim.lr_scheduler import CosineAnnealingLR
|
10 |
+
import math
|
11 |
|
12 |
import sys
|
13 |
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
|
|
16 |
from src.dataset.dataset import VideoDataset
|
17 |
from src.models.model import create_model
|
18 |
from src.dataset.video_utils import create_transform
|
19 |
+
from visualization.visualize import run_visualization
|
20 |
+
from visualization.miscalculations_report import analyze_misclassifications
|
21 |
|
22 |
def train_and_evaluate(config):
|
23 |
+
try:
|
24 |
+
# Create a run directory if it doesn't exist
|
25 |
+
if "run_dir" not in config:
|
26 |
+
config["run_dir"] = create_run_directory()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# Update paths based on run_dir
|
29 |
+
config.update({
|
30 |
+
"best_model_path": os.path.join(config["run_dir"], 'best_model.pth'),
|
31 |
+
"final_model_path": os.path.join(config["run_dir"], 'final_model.pth'),
|
32 |
+
"csv_path": os.path.join(config["run_dir"], 'training_log.csv'),
|
33 |
+
"misclassifications_dir": os.path.join(config["run_dir"], 'misclassifications'),
|
34 |
+
})
|
35 |
+
|
36 |
+
config_path = os.path.join(config["run_dir"], 'config.json')
|
37 |
+
with open(config_path, 'w') as f:
|
38 |
+
json.dump(config, f, indent=2)
|
39 |
+
|
40 |
+
# Set up logging
|
41 |
+
logging.basicConfig(level=logging.INFO,
|
42 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
43 |
+
handlers=[logging.FileHandler(os.path.join(config["run_dir"], 'training.log')),
|
44 |
+
logging.StreamHandler()])
|
45 |
+
logger = logging.getLogger(__name__)
|
46 |
+
|
47 |
+
# Use device from config
|
48 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
49 |
+
logger.info(f"Using device: {device}")
|
50 |
+
|
51 |
+
if torch.cuda.is_available():
|
52 |
+
torch.cuda.empty_cache()
|
53 |
+
|
54 |
+
# Initialize variables
|
55 |
+
best_val_loss = float('inf')
|
56 |
+
epochs_without_improvement = 0
|
57 |
+
|
58 |
+
if torch.cuda.is_available():
|
59 |
+
torch.cuda.empty_cache()
|
60 |
+
print(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory/1e9:.2f}GB")
|
61 |
+
print(f"Currently allocated: {torch.cuda.memory_allocated()/1e9:.2f}GB")
|
62 |
+
|
63 |
+
model = create_model(config["num_classes"], config["clip_model"])
|
64 |
+
# Unfreeze the last 2 layers of the vision encoder
|
65 |
+
model.unfreeze_vision_encoder(num_layers=config["unfreeze_layers"])
|
66 |
+
model = model.to(device)
|
67 |
+
|
68 |
+
# Ensure criterion is on the same device
|
69 |
+
criterion = torch.nn.CrossEntropyLoss().to(device)
|
70 |
+
|
71 |
+
# logger.info(f"Model architecture:\n{model}")
|
72 |
+
|
73 |
+
# Load datasets
|
74 |
+
train_dataset = VideoDataset(
|
75 |
+
os.path.join(config['data_path'], 'train.csv'),
|
76 |
+
config=config
|
77 |
+
)
|
78 |
|
79 |
+
# For validation, create a new config with training=False for transforms
|
80 |
+
val_config = config.copy()
|
81 |
+
val_dataset = VideoDataset(
|
82 |
+
os.path.join(config['data_path'], 'val.csv'),
|
83 |
+
config=val_config,
|
84 |
+
transform=create_transform(config, training=False)
|
85 |
+
)
|
86 |
+
|
87 |
+
# Create data loaders
|
88 |
+
train_loader = DataLoader(train_dataset, batch_size=config["batch_size"], shuffle=True)
|
89 |
+
val_loader = DataLoader(val_dataset, batch_size=config["batch_size"], shuffle=False)
|
90 |
+
|
91 |
+
# Define optimizer and learning rate scheduler
|
92 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=config["learning_rate"], weight_decay=config["weight_decay"])
|
93 |
+
scheduler = CosineAnnealingLR(optimizer, T_max=config["num_epochs"])
|
94 |
+
|
95 |
+
# Open a CSV file to log training progress
|
96 |
+
with open(config["csv_path"], 'w', newline='') as file:
|
97 |
+
writer = csv.writer(file)
|
98 |
+
writer.writerow(["epoch", "train_loss", "train_accuracy", "val_loss", "val_accuracy"])
|
99 |
+
|
100 |
+
# Function to calculate accuracy
|
101 |
+
def calculate_accuracy(outputs, labels):
|
102 |
+
_, predicted = torch.max(outputs, 1)
|
103 |
+
correct = (predicted == labels).sum().item()
|
104 |
+
total = labels.size(0)
|
105 |
+
return correct / total
|
106 |
+
|
107 |
+
def log_misclassifications(outputs, labels, video_paths, dataset, misclassified_videos):
|
108 |
+
_, predicted = torch.max(outputs, 1)
|
109 |
+
for pred, label, video_path in zip(predicted, labels, video_paths):
|
110 |
+
if pred != label:
|
111 |
+
true_label = dataset.label_map[label.item()]
|
112 |
+
predicted_label = dataset.label_map[pred.item()]
|
113 |
+
misclassified_videos.append({
|
114 |
+
'video_path': video_path,
|
115 |
+
'true_label': true_label,
|
116 |
+
'predicted_label': predicted_label
|
117 |
+
})
|
118 |
+
|
119 |
+
# Create a subfolder for misclassification logs
|
120 |
+
os.makedirs(config["misclassifications_dir"], exist_ok=True)
|
121 |
+
|
122 |
+
# Training loop
|
123 |
+
for epoch in range(config["num_epochs"]):
|
124 |
+
model.train()
|
125 |
+
total_loss = 0
|
126 |
+
total_accuracy = 0
|
127 |
+
for frames, labels, video_paths in tqdm(train_loader, desc=f"Epoch {epoch + 1}/{config['num_epochs']}"):
|
128 |
frames = frames.to(device)
|
129 |
labels = labels.to(device)
|
130 |
|
131 |
logits = model(frames)
|
132 |
|
133 |
+
loss = criterion(logits, labels)
|
134 |
accuracy = calculate_accuracy(logits, labels)
|
135 |
|
136 |
+
optimizer.zero_grad()
|
137 |
+
loss.backward()
|
138 |
+
clip_grad_norm_(model.parameters(), max_norm=config["gradient_clip_max_norm"])
|
139 |
+
optimizer.step()
|
140 |
|
141 |
+
total_loss += loss.item()
|
142 |
+
total_accuracy += accuracy
|
143 |
+
|
144 |
+
avg_train_loss = total_loss / len(train_loader)
|
145 |
+
avg_train_accuracy = total_accuracy / len(train_loader)
|
146 |
+
|
147 |
+
# Validation
|
148 |
+
model.eval()
|
149 |
+
val_loss = 0
|
150 |
+
val_accuracy = 0
|
151 |
+
misclassified_videos = []
|
152 |
+
with torch.no_grad():
|
153 |
+
for frames, labels, video_paths in val_loader:
|
154 |
+
frames = frames.to(device)
|
155 |
+
labels = labels.to(device)
|
156 |
+
|
157 |
+
logits = model(frames)
|
158 |
+
|
159 |
+
loss = criterion(logits, labels)
|
160 |
+
accuracy = calculate_accuracy(logits, labels)
|
161 |
+
|
162 |
+
val_loss += loss.item()
|
163 |
+
val_accuracy += accuracy
|
164 |
+
|
165 |
+
# Log misclassifications
|
166 |
+
log_misclassifications(logits, labels, video_paths, val_dataset, misclassified_videos)
|
167 |
+
|
168 |
+
avg_val_loss = val_loss / len(val_loader)
|
169 |
+
avg_val_accuracy = val_accuracy / len(val_loader)
|
170 |
+
|
171 |
+
# Log misclassified videos
|
172 |
+
if misclassified_videos:
|
173 |
+
misclassified_log_path = os.path.join(config["misclassifications_dir"], f'epoch_{epoch+1}.json')
|
174 |
+
with open(misclassified_log_path, 'w') as f:
|
175 |
+
json.dump(misclassified_videos, f, indent=2)
|
176 |
+
logger.info(f"Logged {len(misclassified_videos)} misclassified videos to {misclassified_log_path}")
|
177 |
+
|
178 |
+
# Log the metrics
|
179 |
+
logger.info(f"Epoch [{epoch+1}/{config['num_epochs']}], "
|
180 |
+
f"Train Loss: {avg_train_loss:.4f}, Train Accuracy: {avg_train_accuracy*100:.2f}%, "
|
181 |
+
f"Val Loss: {avg_val_loss:.4f}, Val Accuracy: {avg_val_accuracy*100:.2f}%")
|
182 |
+
|
183 |
+
# Write to CSV
|
184 |
+
with open(config["csv_path"], 'a', newline='') as file:
|
185 |
+
writer = csv.writer(file)
|
186 |
+
writer.writerow([epoch+1, avg_train_loss, avg_train_accuracy*100, avg_val_loss, avg_val_accuracy*100])
|
187 |
+
|
188 |
+
# Learning rate scheduling
|
189 |
+
scheduler.step()
|
190 |
+
|
191 |
+
# Save the best model and check for early stopping
|
192 |
+
if avg_val_loss < best_val_loss:
|
193 |
+
best_val_loss = avg_val_loss
|
194 |
+
torch.save(model.state_dict(), config["best_model_path"])
|
195 |
+
logger.info(f"Saved best model to {config['best_model_path']}")
|
196 |
+
epochs_without_improvement = 0
|
197 |
+
else:
|
198 |
+
epochs_without_improvement += 1
|
199 |
+
|
200 |
+
# Early stopping check
|
201 |
+
if epochs_without_improvement >= config["patience"]:
|
202 |
+
logger.info(f"Early stopping triggered after {config['patience']} epochs without improvement")
|
203 |
+
break
|
204 |
+
|
205 |
+
# Overfitting detection
|
206 |
+
if avg_train_accuracy - avg_val_accuracy > config["overfitting_threshold"]:
|
207 |
+
logger.warning("Possible overfitting detected")
|
208 |
+
|
209 |
+
logger.info("Training finished!")
|
210 |
+
|
211 |
+
# Save the final model
|
212 |
+
torch.save(model.state_dict(), config["final_model_path"])
|
213 |
+
logger.info(f"Saved final model to {config['final_model_path']}")
|
214 |
+
|
215 |
+
# Save run information
|
216 |
+
with open(os.path.join(config["run_dir"], 'run_info.txt'), 'w') as f:
|
217 |
+
for key, value in config.items():
|
218 |
+
f.write(f"{key}: {value}\n")
|
219 |
+
f.write(f"Device: {device}\n")
|
220 |
+
f.write(f"Model: {model.__class__.__name__}\n")
|
221 |
+
f.write(f"Optimizer: {optimizer.__class__.__name__}\n")
|
222 |
+
f.write(f"Scheduler: {scheduler.__class__.__name__}\n")
|
223 |
+
f.write(f"Loss function: CrossEntropyLoss\n")
|
224 |
+
f.write(f"Data augmentation: RandomHorizontalFlip, RandomRotation(5), ColorJitter\n")
|
225 |
+
f.write(f"Mixed precision training: {'Enabled' if 'scaler' in locals() else 'Disabled'}\n")
|
226 |
+
f.write(f"Train dataset size: {len(train_dataset)}\n")
|
227 |
+
f.write(f"Validation dataset size: {len(val_dataset)}\n")
|
228 |
+
f.write(f"Vision encoder frozen: {'Partially' if hasattr(model, 'unfreeze_vision_encoder') else 'Unknown'}\n")
|
229 |
+
|
230 |
+
# Run visualization
|
231 |
+
try:
|
232 |
+
logger.info("Running visualization...")
|
233 |
+
vis_dir, confusion_matrix = run_visualization(config["run_dir"])
|
234 |
+
logger.info(f"Visualization complete! Check the output directory: {vis_dir}")
|
235 |
+
|
236 |
+
# Log confusion matrix results
|
237 |
+
class_accuracies = confusion_matrix.diagonal() / confusion_matrix.sum(axis=1)
|
238 |
+
overall_accuracy = confusion_matrix.diagonal().sum() / confusion_matrix.sum()
|
239 |
+
|
240 |
+
logger.info("\nConfusion Matrix Results:")
|
241 |
+
for i, (label, accuracy) in enumerate(zip(config['class_labels'], class_accuracies)):
|
242 |
+
logger.info(f"{label}: {accuracy:.2%}")
|
243 |
+
logger.info(f"Overall Accuracy: {overall_accuracy:.2%}")
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
logger.error(f"Error running visualization: {str(e)}")
|
247 |
|
248 |
+
# Run misclassification analysis
|
249 |
+
try:
|
250 |
+
analyze_misclassifications(config["run_dir"])
|
251 |
+
logger.info(f"Misclassification analysis complete! Check the output directory: {config['run_dir']}")
|
252 |
+
except Exception as e:
|
253 |
+
logger.error(f"Error running misclassification analysis: {str(e)}")
|
254 |
|
255 |
+
|
256 |
+
if math.isnan(avg_val_accuracy) or math.isinf(avg_val_accuracy):
|
257 |
+
raise ValueError(f"Invalid validation accuracy: {avg_val_accuracy}")
|
258 |
+
|
259 |
+
print("Script finished.")
|
260 |
|
261 |
+
return avg_val_accuracy, vis_dir
|
262 |
+
|
263 |
+
except Exception as e:
|
264 |
+
logger.error(f"Training error: {str(e)}")
|
265 |
+
raise # Re-raise the exception to be caught by the hyperparameter tuning
|
266 |
|
267 |
def main():
|
268 |
# Create run directory
|
|
|
273 |
config = {
|
274 |
"class_labels": class_labels,
|
275 |
"num_classes": len(class_labels),
|
276 |
+
"clip_model": "openai/clip-vit-large-patch14",
|
277 |
"batch_size": 32,
|
278 |
+
"unfreeze_layers": 4,
|
279 |
+
"learning_rate": 5.305885796107412e-06,
|
280 |
+
"weight_decay": 4.543630233732527e-07,
|
281 |
+
"gradient_clip_max_norm": 0.6446650879658523,
|
282 |
+
"augmentation_strength": 0.5827616006715585,
|
283 |
+
"crop_scale_min": 0.7872781274088598,
|
284 |
+
"max_frames": 15,
|
285 |
+
"sigma": 0.286510943464138,
|
286 |
+
"data_path": "../finetune/blog/bryant/random",
|
287 |
"num_epochs": 50,
|
288 |
+
"patience": 10,
|
|
|
|
|
289 |
"image_size": 224,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
"crop_scale_max": 1.0,
|
291 |
+
"normalization_mean": [
|
292 |
+
0.485,
|
293 |
+
0.456,
|
294 |
+
0.406
|
295 |
+
],
|
296 |
+
"normalization_std": [
|
297 |
+
0.229,
|
298 |
+
0.224,
|
299 |
+
0.225
|
300 |
+
],
|
301 |
"overfitting_threshold": 10,
|
302 |
+
# "data_path": '../finetune/blog/bryant/random',
|
303 |
+
# "batch_size": 8,
|
304 |
+
# "learning_rate": 2e-6,
|
305 |
+
# "weight_decay": 0.007,
|
306 |
+
# "num_epochs": 2,
|
307 |
+
# "patience": 10, # for early stopping
|
308 |
+
# "max_frames": 10,
|
309 |
+
# "sigma": 0.3,
|
310 |
+
# "image_size": 224,
|
311 |
+
# "flip_probability": 0.5,
|
312 |
+
# "rotation_degrees": 15,
|
313 |
+
# "brightness_jitter": 0.2,
|
314 |
+
# "contrast_jitter": 0.2,
|
315 |
+
# "saturation_jitter": 0.2,
|
316 |
+
# "hue_jitter": 0.1,
|
317 |
+
# "crop_scale_min": 0.8,
|
318 |
+
# "crop_scale_max": 1.0,
|
319 |
+
# "normalization_mean": [0.485, 0.456, 0.406],
|
320 |
+
# "normalization_std": [0.229, 0.224, 0.225],
|
321 |
+
# "unfreeze_layers": 3,
|
322 |
+
# # "clip_model": "openai/clip-vit-large-patch14",
|
323 |
+
# "clip_model": "openai/clip-vit-base-patch32",
|
324 |
+
# "gradient_clip_max_norm": 1.0,
|
325 |
+
# "overfitting_threshold": 10,
|
326 |
"run_dir": run_dir,
|
|
|
|
|
|
|
|
|
327 |
}
|
328 |
train_and_evaluate(config)
|
329 |
|
script/visualization/visualize.py
CHANGED
@@ -110,28 +110,28 @@ def generate_evaluation_metrics(model, data_loader, device, output_dir, class_la
|
|
110 |
|
111 |
return cm
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
120 |
# Load configuration
|
121 |
config = get_config(run_dir)
|
122 |
|
123 |
class_labels = config['class_labels']
|
124 |
num_classes = config['num_classes']
|
125 |
-
data_path = config['data_path']
|
126 |
-
# data_path= '../finetune/3moves_otherpeopleval'
|
127 |
-
# data_path = '../finetune/otherpeople3moves'
|
128 |
|
129 |
# Paths
|
130 |
log_file = os.path.join(run_dir, 'training_log.csv')
|
131 |
model_path = get_latest_model_path(run_dir)
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
|
136 |
# Get the last directory of data_path and the file name
|
137 |
last_dir = os.path.basename(os.path.normpath(data_path))
|
@@ -160,3 +160,12 @@ if __name__ == "__main__":
|
|
160 |
cm = generate_evaluation_metrics(model, test_loader, device, vis_dir, class_labels, data_info)
|
161 |
|
162 |
print(f"Visualization complete! Check the output directory: {vis_dir}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
return cm
|
112 |
|
113 |
+
def run_visualization(run_dir, data_path=None, test_csv=None):
|
114 |
+
"""
|
115 |
+
Run visualization for a specific training run
|
116 |
+
|
117 |
+
Args:
|
118 |
+
run_dir (str): Path to the run directory
|
119 |
+
data_path (str, optional): Override the data path from config
|
120 |
+
test_csv (str, optional): Override the test CSV path
|
121 |
+
"""
|
122 |
# Load configuration
|
123 |
config = get_config(run_dir)
|
124 |
|
125 |
class_labels = config['class_labels']
|
126 |
num_classes = config['num_classes']
|
127 |
+
data_path = data_path or config['data_path']
|
|
|
|
|
128 |
|
129 |
# Paths
|
130 |
log_file = os.path.join(run_dir, 'training_log.csv')
|
131 |
model_path = get_latest_model_path(run_dir)
|
132 |
+
|
133 |
+
if test_csv is None:
|
134 |
+
test_csv = os.path.join(data_path, 'test.csv')
|
135 |
|
136 |
# Get the last directory of data_path and the file name
|
137 |
last_dir = os.path.basename(os.path.normpath(data_path))
|
|
|
160 |
cm = generate_evaluation_metrics(model, test_loader, device, vis_dir, class_labels, data_info)
|
161 |
|
162 |
print(f"Visualization complete! Check the output directory: {vis_dir}")
|
163 |
+
return vis_dir, cm
|
164 |
+
|
165 |
+
if __name__ == "__main__":
|
166 |
+
# Find the most recent run directory
|
167 |
+
run_dir = get_latest_run_dir()
|
168 |
+
# run_dir = "/home/bawolf/workspace/break/clip/runs/run_20241024-150232_otherpeopleval_large_model"
|
169 |
+
# run_dir = "/home/bawolf/workspace/break/clip/runs/run_20241022-122939_3moves_balanced"
|
170 |
+
|
171 |
+
run_visualization(run_dir)
|
src/dataset/dataset.py
CHANGED
@@ -2,6 +2,7 @@ import torch
|
|
2 |
from torch.utils.data import Dataset
|
3 |
import csv
|
4 |
from .video_utils import create_transform, extract_frames
|
|
|
5 |
|
6 |
class VideoDataset(Dataset):
|
7 |
def __init__(self, file_path, config, transform=None):
|
@@ -29,7 +30,8 @@ class VideoDataset(Dataset):
|
|
29 |
if len(row) != 2:
|
30 |
print(f"Skipping invalid row: {row}")
|
31 |
continue
|
32 |
-
|
|
|
33 |
try:
|
34 |
label = int(label)
|
35 |
except ValueError:
|
|
|
2 |
from torch.utils.data import Dataset
|
3 |
import csv
|
4 |
from .video_utils import create_transform, extract_frames
|
5 |
+
import os
|
6 |
|
7 |
class VideoDataset(Dataset):
|
8 |
def __init__(self, file_path, config, transform=None):
|
|
|
30 |
if len(row) != 2:
|
31 |
print(f"Skipping invalid row: {row}")
|
32 |
continue
|
33 |
+
relative_video_path, label = row
|
34 |
+
video_path = os.path.join(config['data_path'], relative_video_path)
|
35 |
try:
|
36 |
label = int(label)
|
37 |
except ValueError:
|