|
import os |
|
from cog import BasePredictor, Input, Path |
|
import torch |
|
import json |
|
import sys |
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
|
|
from src.models.model import load_model |
|
from src.dataset.video_utils import create_transform, extract_frames |
|
|
|
CHECKPOINT_DIR = "checkpoints/" |
|
|
|
class Predictor(BasePredictor): |
|
def setup(self): |
|
"""Load the model into memory to make running multiple predictions efficient""" |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print(f"Using device: {self.device}") |
|
|
|
|
|
with open( |
|
os.path.join(CHECKPOINT_DIR, "config.json"), 'r') as f: |
|
self.config = json.load(f) |
|
|
|
|
|
self.transform = create_transform(self.config, training=False) |
|
|
|
|
|
self.model = load_model( |
|
self.config['num_classes'], |
|
os.path.join(CHECKPOINT_DIR, "weights.ckpt"), |
|
self.device, |
|
self.config['clip_model'] |
|
) |
|
self.model.eval() |
|
|
|
def predict(self, video: Path = Input(description="Input video file")) -> dict: |
|
"""Run a single prediction on the model""" |
|
try: |
|
|
|
frames, success = extract_frames( |
|
str(video), |
|
self.config, |
|
self.transform |
|
) |
|
|
|
if not success or frames is None: |
|
raise ValueError(f"Failed to process video: {video}") |
|
|
|
|
|
frames = frames.unsqueeze(0).to(self.device) |
|
|
|
|
|
with torch.no_grad(): |
|
output = self.model(frames) |
|
probabilities = torch.softmax(output, dim=1) |
|
predicted_class = torch.argmax(probabilities, dim=1).item() |
|
confidence = probabilities[0][predicted_class].item() |
|
|
|
|
|
all_confidences = { |
|
label: probabilities[0][i].item() |
|
for i, label in enumerate(self.config['class_labels']) |
|
} |
|
|
|
return { |
|
"class": self.config['class_labels'][predicted_class], |
|
"confidence": confidence, |
|
"all_confidences": all_confidences |
|
} |
|
|
|
except Exception as e: |
|
raise ValueError(f"Error processing video: {str(e)}") |