batuergun commited on
Commit
03676a9
•
1 Parent(s): 2f6433a

new fhe compilations

Browse files
{data → v1}/client.zip RENAMED
File without changes
{data → v1}/server.zip RENAMED
File without changes
v2/client.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a31c3726f23039230c9b7b8967cd09138da91576e6a61d6ec708bcc9c6734cf
3
+ size 10773
v2/model.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class SeizureDetectionCNN(nn.Module):
2
+ def init(self, num_classes=2):
3
+ super(SeizureDetectionCNN, self).init()
4
+ self.conv1= nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) # 32, 32, 32
5
+
6
+ self.pool= nn.MaxPool2d(kernel_size=2, stride=2) # 32, 16, 16
7
+
8
+ self.conv2= nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) # 64, 16, 16 -> 64, 8, 8
9
+
10
+ # Adding Batch Normalization
11
+ self.bn1 = nn.BatchNorm2d(32)
12
+ self.bn2 = nn.BatchNorm2d(64)
13
+
14
+ self.dropout = nn.Dropout(p=0.5) # Dropout with a probability of 50%
15
+
16
+ self.fc1= nn.Linear(64 * 8 * 8, 120)
17
+ self.fc2= nn.Linear(120, 32)
18
+ self.fc3= nn.Linear(32, num_classes)
19
+
20
+ def forward(self, x):
21
+ x = self.pool(F.relu(self.bn1(self.conv1(x)))) # 32, 32, 32
22
+ x = self.pool(F.relu(self.bn2(self.conv2(x)))) # 64, 8, 8
23
+
24
+ x = torch.flatten(x, 1)
25
+ x = self.dropout(F.relu(self.fc1(x))) # Apply dropout
26
+ x = self.dropout(F.relu(self.fc2(x))) # Apply dropout
27
+ x = self.fc3(x)
28
+ return x
v2/server.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1c7dd6ca3a84d769fe89f2d5ea1bbd95376bc803dd2a1230a0bc379aed134d4
3
+ size 244437