new fhe compilations
Browse files- {data → v1}/client.zip +0 -0
- {data → v1}/server.zip +0 -0
- v2/client.zip +3 -0
- v2/model.py +28 -0
- v2/server.zip +3 -0
{data → v1}/client.zip
RENAMED
File without changes
|
{data → v1}/server.zip
RENAMED
File without changes
|
v2/client.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a31c3726f23039230c9b7b8967cd09138da91576e6a61d6ec708bcc9c6734cf
|
3 |
+
size 10773
|
v2/model.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class SeizureDetectionCNN(nn.Module):
|
2 |
+
def init(self, num_classes=2):
|
3 |
+
super(SeizureDetectionCNN, self).init()
|
4 |
+
self.conv1= nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) # 32, 32, 32
|
5 |
+
|
6 |
+
self.pool= nn.MaxPool2d(kernel_size=2, stride=2) # 32, 16, 16
|
7 |
+
|
8 |
+
self.conv2= nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) # 64, 16, 16 -> 64, 8, 8
|
9 |
+
|
10 |
+
# Adding Batch Normalization
|
11 |
+
self.bn1 = nn.BatchNorm2d(32)
|
12 |
+
self.bn2 = nn.BatchNorm2d(64)
|
13 |
+
|
14 |
+
self.dropout = nn.Dropout(p=0.5) # Dropout with a probability of 50%
|
15 |
+
|
16 |
+
self.fc1= nn.Linear(64 * 8 * 8, 120)
|
17 |
+
self.fc2= nn.Linear(120, 32)
|
18 |
+
self.fc3= nn.Linear(32, num_classes)
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
x = self.pool(F.relu(self.bn1(self.conv1(x)))) # 32, 32, 32
|
22 |
+
x = self.pool(F.relu(self.bn2(self.conv2(x)))) # 64, 8, 8
|
23 |
+
|
24 |
+
x = torch.flatten(x, 1)
|
25 |
+
x = self.dropout(F.relu(self.fc1(x))) # Apply dropout
|
26 |
+
x = self.dropout(F.relu(self.fc2(x))) # Apply dropout
|
27 |
+
x = self.fc3(x)
|
28 |
+
return x
|
v2/server.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1c7dd6ca3a84d769fe89f2d5ea1bbd95376bc803dd2a1230a0bc379aed134d4
|
3 |
+
size 244437
|