a2c-AntBulletEnv-v0 / config.json
bastienm's picture
Initial commit
da1e88a
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fde91189120>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fde911891b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fde91189240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fde911892d0>", "_build": "<function ActorCriticPolicy._build at 0x7fde91189360>", "forward": "<function ActorCriticPolicy.forward at 0x7fde911893f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fde91189480>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fde91189510>", "_predict": "<function ActorCriticPolicy._predict at 0x7fde911895a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fde91189630>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fde911896c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fde91189750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fde91187240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684328678057493400, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKb8Q79m6dK+v6AsP9aIX75XX0m/Iq+FPthJJr8s47Y+K16yP98hIbyi4iW/F4wnv4tztb8etrk8f2E6P3TqlD4xat0/o06yvi8hkD0yyoO+BLYXv+lv6L47wa2+EDC+PgAnSj/dFe0+EuasPl836j78kRE/StlRvUggEj+bl+a+D6niP9Ova76CNSi/8YJWv69tsj+tbpc7/AMAP2zPKj9xf7m99F7uv6F3mj+JgUA7a3TqP/fw2D7uWCC/okalP7tb8L7OF8Q/uU3Avcb+lcAAJ0o/ODYKwBLmrD6l5wvAnz4WPxDukr5icSU/z4MMP3TuNr7nnGM+P62ivzVKFb4xT6c/uCKKP9LOsb3cjvk95F3NP3K7ibws1AM/S6XZP+UK8T+kLRy/3kqvvx8YaD5ia4a/IWyKPdmOwT1OMyDAACdKPzg2CsAS5qw+pecLwDEvzT70IlI+HHHnPkdCnT8KqANADeujPx5Xjr0oeQPATGu2P1y8G0Ar0tc/OaDHPtCZcL/Pyc6/8vd3P/gw178djX8/8f4TvCQpQz8V388/6jb/vRcsxT+G92m/6gQkPwAnSj84NgrAEuasPqXnC8CUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABorwQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALbyZvQAAAABPCu+/AAAAAGTgzDsAAAAA48XYPwAAAACX+uW9AAAAAK+z9T8AAAAArqD8vQAAAAAyR/6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyWN8NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFGasL0AAAAArDbyvwAAAACJG1y9AAAAADiJ+D8AAAAAgx6nPAAAAACyZOk/AAAAAN0L470AAAAAmh/bvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJHADYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5o/29AAAAAD627L8AAAAAeqWsvQAAAACt4vA/AAAAANBg/j0AAAAApb7tPwAAAAC0P6U9AAAAAEFX/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACor1i1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFrWsPQAAAAA6WP+/AAAAALAfBb0AAAAAGLzlPwAAAAB1quU9AAAAAO4M8z8AAAAAzOLoPAAAAABNG/+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJRE7aXa8HyMAWyUTegDjAF0lEdApXQLApKBd3V9lChoBkdAki9x9oexOmgHTegDaAhHQKV0DjUd7v51fZQoaAZHQJQDI0ygwoNoB03oA2gIR0Cld0MiKR+0dX2UKGgGR0CVBV9PDYRNaAdN6ANoCEdApXhaoqCpWHV9lChoBkdAlDSc8kleGGgHTegDaAhHQKWAvaHsTnJ1fZQoaAZHQJUPW4MF2V5oB03oA2gIR0ClgMCNKh+OdX2UKGgGR0CVE/fiPyTZaAdN6ANoCEdApYL7HsC1Z3V9lChoBkdAl5HcN2C/XWgHTegDaAhHQKWDsWznied1fZQoaAZHQJJN0qSX+l1oB03oA2gIR0Cliw87p3X7dX2UKGgGR0CQ7CJLuhK2aAdN6ANoCEdApYsRqmCROnV9lChoBkdAk7/7Ub1h9mgHTegDaAhHQKWNDYxtYSx1fZQoaAZHQJHpMMDwH7hoB03oA2gIR0CljbgDaGpNdX2UKGgGR0CJtdcUM5OraAdN6ANoCEdApZehcu8K5XV9lChoBkdAkUt3f642CWgHTegDaAhHQKWXpIU8FIN1fZQoaAZHQIzGxYcNpdtoB03oA2gIR0ClmdWUbDMvdX2UKGgGR0CLt6A5q/M4aAdN6ANoCEdApZqRVCHARHV9lChoBkdAhyo5qVQhwGgHTegDaAhHQKWiXKwpvxZ1fZQoaAZHQIRbYmgJ1JVoB03oA2gIR0Clol9Aood/dX2UKGgGR0CFGfAWSEDhaAdN6ANoCEdApaSb1f3N93V9lChoBkdAfuUEn9ehPGgHTegDaAhHQKWlXUWEbo91fZQoaAZHQIkydbiZOSJoB03oA2gIR0ClroJFLFn7dX2UKGgGR0CJYI6PsAvMaAdN6ANoCEdApa6FyR0U5HV9lChoBkdAimHpNbkfcWgHTegDaAhHQKWxwuLaVUx1fZQoaAZHQIaUxdGAkLRoB03oA2gIR0ClsoIsRQJpdX2UKGgGR0CHJ8o/A0sOaAdN6ANoCEdApboap5u63HV9lChoBkdAiEx54W1twmgHTegDaAhHQKW6HczqKP51fZQoaAZHQIUtxcqvvBtoB03oA2gIR0ClvEOyNXHSdX2UKGgGR0CGAQCT2WY4aAdN6ANoCEdApbztkH2RJXV9lChoBkdAh9t4YrJ8v2gHTegDaAhHQKXEvBAv+Ox1fZQoaAZHQIZfr83uNPxoB03oA2gIR0ClxL6Ww/xEdX2UKGgGR0CIPpPl+3H8aAdN6ANoCEdApcfQUHpr13V9lChoBkdAhvJxBeHBUWgHTegDaAhHQKXJBDfFaSt1fZQoaAZHQIKAMmplz2hoB03oA2gIR0Cl0doRIz3zdX2UKGgGR0CIyoTXarWAaAdN6ANoCEdApdHcju8brHV9lChoBkdAhOWSYgJTl2gHTegDaAhHQKXUHbyH2yt1fZQoaAZHQIg7XBLwnYxoB03oA2gIR0Cl1Ne5OJtSdX2UKGgGR0CKxrDJEH+qaAdN6ANoCEdApdxw8fV7QnV9lChoBkdAioa0aya/h2gHTegDaAhHQKXcc1hLGrF1fZQoaAZHQJI71Kyv9tNoB03oA2gIR0Cl3qUelsP8dX2UKGgGR0CJzhcY64lQaAdN6ANoCEdApd9yzC1qnHV9lChoBkdAidMfYBeXzGgHTegDaAhHQKXpctZFG5N1fZQoaAZHQIVm11IRRMxoB03oA2gIR0Cl6XWLP2PDdX2UKGgGR0CKSkKyfL9uaAdN6ANoCEdApeu8dkrf+HV9lChoBkdAkTM96X0GvGgHTegDaAhHQKXscSRKYiR1fZQoaAZHQIGVKI3zcypoB03oA2gIR0Cl9BRbbDdhdX2UKGgGR0CSxjihFmWdaAdN6ANoCEdApfQWzKLbYnV9lChoBkdAkap3SWqtHWgHTegDaAhHQKX2SgeRxLl1fZQoaAZHQI5mpvitJWhoB03oA2gIR0Cl9vxASnLrdX2UKGgGR0CIU/Qj2SMcaAdN6ANoCEdApgCFXFLnLnV9lChoBkdAha++gL7XQWgHTegDaAhHQKYAiNSZSel1fZQoaAZHQIaGBhQWN3poB03oA2gIR0CmAzd5Y5ktdX2UKGgGR0CEQev7m+0xaAdN6ANoCEdApgPvHPu5SXV9lChoBkdAgzbI1LrX2GgHTegDaAhHQKYLoSXdCVt1fZQoaAZHQIlTtZmqYJFoB03oA2gIR0CmC6QAlv61dX2UKGgGR0CGAeqR2bG4aAdN6ANoCEdApg3zFyaNM3V9lChoBkdAg3j9X9zfamgHTegDaAhHQKYOq5xzaK11fZQoaAZHQIi8763y7PJoB03oA2gIR0CmFntiYsundX2UKGgGR0COA+MZxaPkaAdN6ANoCEdAphZ+orFwUHV9lChoBkdAitSiLl3hXWgHTegDaAhHQKYZwa4MF2V1fZQoaAZHQI5wmGO+7DloB03oA2gIR0CmGtvdl/YrdX2UKGgGR0COj59GZuyeaAdN6ANoCEdApiMzhegL7XV9lChoBkdAiPOPUjLSu2gHTegDaAhHQKYjNhbW3Bp1fZQoaAZHQI5jzxAjY7JoB03oA2gIR0CmJXdTYNAkdX2UKGgGR0CF8AG/N7jUaAdN6ANoCEdApiYxPIn0CnV9lChoBkdAi4/6DXe3yGgHTegDaAhHQKYt79bX6Ip1fZQoaAZHQIuOFPUKArhoB03oA2gIR0CmLfJMHryEdX2UKGgGR0CDrXRE4NqhaAdN6ANoCEdApjAlVT72tnV9lChoBkdAh6gAAyVObmgHTegDaAhHQKYw4NsnAqN1fZQoaAZHQI9EKOgg5ipoB03oA2gIR0CmOsx2r4nGdX2UKGgGR0CRCXZQHiWFaAdN6ANoCEdApjrO7aqS5nV9lChoBkdAjm0IhyKekGgHTegDaAhHQKY9CkM1CPZ1fZQoaAZHQIE64prk8zRoB03oA2gIR0CmPchUJfICdX2UKGgGR0CHzKO3lS0jaAdN6ANoCEdApkWcejmCAnV9lChoBkdAf/1bD/EOy2gHTegDaAhHQKZFnzvJA+p1fZQoaAZHQI1/VPSDyvtoB03oA2gIR0CmR81Cw8nvdX2UKGgGR0CRNldc0LtvaAdN6ANoCEdApkiMjiXIEXV9lChoBkdAhzjPmgam42gHTegDaAhHQKZSYrn1WbR1fZQoaAZHQIvZDbxmTTxoB03oA2gIR0CmUmZeJHiFdX2UKGgGR0CLAQOXE61caAdN6ANoCEdAplULpA2Q4nV9lChoBkdAjRJkw35vcmgHTegDaAhHQKZVyV2zOX51fZQoaAZHQISRcx46fapoB03oA2gIR0CmXVcinpB5dX2UKGgGR0CQalAWBSUDaAdN6ANoCEdApl1ZwdbPhXV9lChoBkdAkUTWGh24eGgHTegDaAhHQKZfsCMglnh1fZQoaAZHQIhnwetCAtpoB03oA2gIR0CmYHHqVyFPdX2UKGgGR0CKUuaTfR/maAdN6ANoCEdApmhftjTa03V9lChoBkdAhnd4FJQLu2gHTegDaAhHQKZoYom5UcZ1fZQoaAZHQIjjO1UlzEJoB03oA2gIR0Cma8SCOFQEdX2UKGgGR0CNJvcmBvrGaAdN6ANoCEdApmz89bHIZXV9lChoBkdAkP42ZJCjUWgHTegDaAhHQKZ04pVjqfR1fZQoaAZHQJBDrjPv8ZVoB03oA2gIR0CmdOVyWAwxdX2UKGgGR0CRmPEal1r7aAdN6ANoCEdApnclsSCe3HV9lChoBkdAkpxcQiA2AGgHTegDaAhHQKZ33EAHVwx1fZQoaAZHQJKlSu+yquNoB03oA2gIR0Cmf4Vie/YbdX2UKGgGR0CL17+DOC5FaAdN6ANoCEdApn+H5BTn73V9lChoBkdAkwFVRUFSsWgHTegDaAhHQKaBnle4Tbp1fZQoaAZHQJGBdegL7XRoB03oA2gIR0CmglUA93bFdX2UKGgGR0CSWU4Y77sOaAdN6ANoCEdApoxzlo11n3V9lChoBkdAitYA4ffXPWgHTegDaAhHQKaMdgE2YOV1fZQoaAZHQJAdjeSB9ThoB03oA2gIR0CmjqhMajvedX2UKGgGR0COZkIa99MLaAdN6ANoCEdApo9ZWLgn+nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}