BaOsa / CustomModel.py
bastasie's picture
Upload CustomModel.py
e3081e3 verified
raw
history blame
1.43 kB
def ba_activation(x, weights, a, epsilon):
# Ensure x is a torch tensor
x = torch.as_tensor(x, dtype=torch.float32)
# Modulate inputs based on weights for the activation
x = weights * x
# Apply the Ba-inspired operation
# Clamp and normalize x to stabilize the operation
x_normalized = torch.clamp(x, -1, 1)
fractional_inspired = torch.pow(torch.abs(x_normalized), x_normalized)
activation_result = epsilon * torch.cos(np.pi * a * fractional_inspired * torch.log(torch.abs(fractional_inspired) + 1e-7))
# Apply an additional non-linearity to ensure the output is stable
activation_result = torch.tanh(activation_result)
return activation_result
# Define a custom model using the Ba-inspired activation function
class CustomModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(CustomModel, self).__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.linear2 = nn.Linear(hidden_size, output_size)
self.weights = nn.Parameter(torch.randn(hidden_size))
self.a = 0.5 # Parameter for the Ba-inspired activation
self.epsilon = 0.1 # Parameter for the Ba-inspired activation
def forward(self, x):
x = self.linear1(x)
x = ba_activation(x, self.weights, self.a, self.epsilon) # Use Ba-inspired activation
x = self.linear2(x)
return x