basilePlus commited on
Commit
9874c41
·
verified ·
1 Parent(s): 634522b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -10
README.md CHANGED
@@ -9,6 +9,8 @@ base_model: meta-llama/Meta-Llama-3-8B-Instruct
9
  model-index:
10
  - name: llama3-8b-schopenhauer
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,19 +18,19 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # llama3-8b-schopenhauer
18
 
19
- This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset.
20
 
21
- ## Model description
22
 
23
- More information needed
24
 
25
- ## Intended uses & limitations
26
 
27
- More information needed
 
28
 
29
  ## Training and evaluation data
30
 
31
- More information needed
32
 
33
  ## Training procedure
34
 
@@ -43,10 +45,6 @@ The following hyperparameters were used during training:
43
  - lr_scheduler_type: linear
44
  - num_epochs: 3.0
45
 
46
- ### Training results
47
-
48
-
49
-
50
  ### Framework versions
51
 
52
  - PEFT 0.10.0
 
9
  model-index:
10
  - name: llama3-8b-schopenhauer
11
  results: []
12
+ language:
13
+ - en
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
18
 
19
  # llama3-8b-schopenhauer
20
 
21
+ ![llama_schopenhauer.png](https://cdn-uploads.huggingface.co/production/uploads/643c1c055fcffe09fb6874f1/fstVI_o29OyepyL2nIZZ_.png)
22
 
 
23
 
24
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on a synthetic dataset of argumentative conversations.
25
 
26
+ ## Model description
27
 
28
+ The model as been trained to be an argumentative expert, following deterministic rethoric guidelines depicted by Schopenhauer in The Art of Being Right.
29
+ The model aims at showing how persuasive a model can be if we simply introduce some simple deterministic argumentative guidelines.
30
 
31
  ## Training and evaluation data
32
 
33
+ The model has been trained using LoRa on a small synthetic dataset which quality can be improved both in size and quality. The model has shown great performance in responding with short percuting answers to argumentative conversations. No argumentative metric has been implemented, interesting arguments evaluation benchmark can be found in [Cabrio, E., & Villata, S. (Year). Towards a Benchmark of Natural Language Arguments. INRIA Sophia Antipolis, France.](https://arxiv.org/pdf/1405.0941v1)
34
 
35
  ## Training procedure
36
 
 
45
  - lr_scheduler_type: linear
46
  - num_epochs: 3.0
47
 
 
 
 
 
48
  ### Framework versions
49
 
50
  - PEFT 0.10.0