bartpotrykus commited on
Commit
6881971
1 Parent(s): c0e6587

30m training steps with linear learning rate scheduler applied after 15m steps

Browse files
30m-linlr_0_0002_after15m-ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff4d7f96d7290c1bff4292371349f0ae7d1f950143eed5222d6298fb2079c85f
3
+ size 147342
30m-linlr_0_0002_after15m-ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
30m-linlr_0_0002_after15m-ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc758f64ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc758f64f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc758f69040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc758f690d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc758f69160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc758f691f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc758f69280>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc758f69310>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc758f693a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc758f69430>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc758f694c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc758f5dd80>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 15007744,
46
+ "_total_timesteps": 15000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671624067694421098,
51
+ "learning_rate": {
52
+ ":type:": "<class 'function'>",
53
+ ":serialized:": "gAWV5AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMdAoJCVByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAuCgoJCTpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6CgkJOnJldHVybjogY3VycmVudCBsZWFybmluZyByYXRlCgkJlIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjBF1bml0MV9oYW5kcy1vbi5weZSMBGZ1bmOUSxFDAgAHlIwNaW5pdGlhbF92YWx1ZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoK3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Kjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
54
+ },
55
+ "tensorboard_log": null,
56
+ "lr_schedule": {
57
+ ":type:": "<class 'function'>",
58
+ ":serialized:": "gAWV5AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMdAoJCVByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAuCgoJCTpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6CgkJOnJldHVybjogY3VycmVudCBsZWFybmluZyByYXRlCgkJlIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjBF1bml0MV9oYW5kcy1vbi5weZSMBGZ1bmOUSxFDAgAHlIwNaW5pdGlhbF92YWx1ZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoK3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Kjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
59
+ },
60
+ "_last_obs": null,
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0005162666666667093,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjEzAr5HLcUCUhpRSlIwBbJRLg4wBdJRHQMvTptYKYzB1fZQoaAZoCWgPQwjCMcueBL1wQJSGlFKUaBVLmGgWR0DL06ogNgBtdX2UKGgGaAloD0MIbm3heaksb0CUhpRSlGgVS5FoFkdAy9O1+CsfaHV9lChoBmgJaA9DCNttF5prmnNAlIaUUpRoFUuqaBZHQMvTyK9wm3R1fZQoaAZoCWgPQwgdjxmojBxzQJSGlFKUaBVLu2gWR0DL08vLHMlkdX2UKGgGaAloD0MIJA9EFik7ckCUhpRSlGgVS65oFkdAy9PNfrKNhnV9lChoBmgJaA9DCAYOaOmK4XFAlIaUUpRoFUuhaBZHQMvT0DlYEGJ1fZQoaAZoCWgPQwito6oJouJxQJSGlFKUaBVLtGgWR0DL09aDoQnQdX2UKGgGaAloD0MI2hoRjMPtcUCUhpRSlGgVS6toFkdAy9PdQJokA3V9lChoBmgJaA9DCDwUBfoElXRAlIaUUpRoFUu1aBZHQMvT4dPci4d1fZQoaAZoCWgPQwjPZWoS/G5zQJSGlFKUaBVLnWgWR0DL0+Ol/H5rdX2UKGgGaAloD0MIAWn/A+xVc0CUhpRSlGgVS6hoFkdAy9PjubZvk3V9lChoBmgJaA9DCGPRdHby0nJAlIaUUpRoFUuwaBZHQMvT6IpYs/Z1fZQoaAZoCWgPQwhDIJc48mNxQJSGlFKUaBVLkGgWR0DL0+laMaS+dX2UKGgGaAloD0MINlt5yb/5cUCUhpRSlGgVS6xoFkdAy9QBYW+GoXV9lChoBmgJaA9DCFMkXwnkFHFAlIaUUpRoFUunaBZHQMvUBiEQGwB1fZQoaAZoCWgPQwiTc2IPLQ50QJSGlFKUaBVLt2gWR0DL1BH4mCyydX2UKGgGaAloD0MIxomvdtRkcUCUhpRSlGgVS5xoFkdAy9QRuejEenV9lChoBmgJaA9DCOaRPxi4K3JAlIaUUpRoFUuzaBZHQMvUEzguRLd1fZQoaAZoCWgPQwgnoImwYUJwQJSGlFKUaBVLlWgWR0DL1CI0fozOdX2UKGgGaAloD0MIGjOJeoFtcUCUhpRSlGgVS5FoFkdAy9QndUsFuHV9lChoBmgJaA9DCAys4/hh43FAlIaUUpRoFUt5aBZHQMvULf0Eov11fZQoaAZoCWgPQwhNZVHYxVlwQJSGlFKUaBVLo2gWR0DL1DCfg75mdX2UKGgGaAloD0MIIcuCib8rckCUhpRSlGgVS5JoFkdAy9Q3SRbKR3V9lChoBmgJaA9DCKZG6Gfq4nFAlIaUUpRoFUuyaBZHQMvUOIfjjrB1fZQoaAZoCWgPQwgIdCZtKm9zQJSGlFKUaBVLsGgWR0DL1EMAzYVZdX2UKGgGaAloD0MIQfD49q4XcECUhpRSlGgVS5FoFkdAy9RDtGd7OXV9lChoBmgJaA9DCHKJIw8ESnJAlIaUUpRoFUueaBZHQMvURkfs/pt1fZQoaAZoCWgPQwg4TZ8d8H1xQJSGlFKUaBVLsWgWR0DL1FBf8dgfdX2UKGgGaAloD0MI7FG4HkWBcECUhpRSlGgVS7NoFkdAy9Rawosqa3V9lChoBmgJaA9DCIiE7/1N83FAlIaUUpRoFUuMaBZHQMvUbSfDk2h1fZQoaAZoCWgPQwjBkNWtniJxQJSGlFKUaBVLo2gWR0DL1HGB+WnkdX2UKGgGaAloD0MIq3tkc9W3c0CUhpRSlGgVS69oFkdAy9R06mO2iXV9lChoBmgJaA9DCH433bKDZHNAlIaUUpRoFUucaBZHQMvUeaN2ki51fZQoaAZoCWgPQwhn8zgMJsJxQJSGlFKUaBVLhWgWR0DL1H98eCCjdX2UKGgGaAloD0MI8aFES564c0CUhpRSlGgVS7poFkdAy9SM6shgV3V9lChoBmgJaA9DCAqEnWKVnnFAlIaUUpRoFUubaBZHQMvUlPCl7+l1fZQoaAZoCWgPQwi95erH5hRzQJSGlFKUaBVLsGgWR0DL1Jbru6VddX2UKGgGaAloD0MIx/MZUK9pcUCUhpRSlGgVS6ZoFkdAy9SmMmWt2nV9lChoBmgJaA9DCG73cp8c7nFAlIaUUpRoFUutaBZHQMvUrKCQLeB1fZQoaAZoCWgPQwiN7iB2pthzQJSGlFKUaBVLomgWR0DL1LEhcJMQdX2UKGgGaAloD0MIsP86N21Lb0CUhpRSlGgVS6NoFkdAy9S0cH4XXXV9lChoBmgJaA9DCFABMJ6BuXJAlIaUUpRoFUuqaBZHQMvUthNM4951fZQoaAZoCWgPQwiRt1z9WJ10QJSGlFKUaBVLy2gWR0DL1Lk8V58jdX2UKGgGaAloD0MIi28ofPYVdECUhpRSlGgVS7RoFkdAy9TVgdfb9XV9lChoBmgJaA9DCLa7B+i+1HNAlIaUUpRoFUvKaBZHQMvU2cohIOJ1fZQoaAZoCWgPQwhqhH6mHg5yQJSGlFKUaBVLq2gWR0DL1OLJ2dNGdX2UKGgGaAloD0MIMZqV7cPDcECUhpRSlGgVS6BoFkdAy9Tnx1gYxnV9lChoBmgJaA9DCKFHjJ4b8nNAlIaUUpRoFUutaBZHQMvU68y31Bd1fZQoaAZoCWgPQwgYXHNHvx9yQJSGlFKUaBVLp2gWR0DL1PHuTibVdX2UKGgGaAloD0MIpg2HpYEJdECUhpRSlGgVS8FoFkdAy9T1v863iXV9lChoBmgJaA9DCNx++WRFMXRAlIaUUpRoFUuyaBZHQMvVBwpWmxd1fZQoaAZoCWgPQwhGQ8aj1NNxQJSGlFKUaBVLrGgWR0DL1QskQf6odX2UKGgGaAloD0MI0xdCzvuUcUCUhpRSlGgVS6loFkdAy9ULKSPluHV9lChoBmgJaA9DCJD11OqrZW9AlIaUUpRoFUuQaBZHQMvVE5AhStN1fZQoaAZoCWgPQwg1fuGVpIxyQJSGlFKUaBVLimgWR0DL1RRcophGdX2UKGgGaAloD0MIVBuciP79c0CUhpRSlGgVS7xoFkdAy9UnGIbfg3V9lChoBmgJaA9DCKzhIve0znNAlIaUUpRoFUuzaBZHQMvVJxrrPdF1fZQoaAZoCWgPQwgpIVhVr7VyQJSGlFKUaBVLomgWR0DL1SfCGetkdX2UKGgGaAloD0MIxEMYPw27ckCUhpRSlGgVS7ZoFkdAy9UwIHkcTHV9lChoBmgJaA9DCLBYw0Xu43BAlIaUUpRoFUuSaBZHQMvVOE0rK/51fZQoaAZoCWgPQwhHrwYoTQ1zQJSGlFKUaBVLqGgWR0DL1Us8mrsCdX2UKGgGaAloD0MIiNnLtpPMc0CUhpRSlGgVS59oFkdAy9VN9fCyhXV9lChoBmgJaA9DCMiZJmz/5HJAlIaUUpRoFUuQaBZHQMvVUu8kD6p1fZQoaAZoCWgPQwjFO8CTlgRzQJSGlFKUaBVLnGgWR0DL1VTrmhdudX2UKGgGaAloD0MInIcTmE4Dc0CUhpRSlGgVS6hoFkdAy9VYtU4rBnV9lChoBmgJaA9DCMO5hhkaFnBAlIaUUpRoFUuRaBZHQMvVa/I8yN51fZQoaAZoCWgPQwiSWb3DLThyQJSGlFKUaBVLt2gWR0DL1XDM3ZPEdX2UKGgGaAloD0MI81gzMsiWc0CUhpRSlGgVS6FoFkdAy9VzCemNznV9lChoBmgJaA9DCP0RhgELYHJAlIaUUpRoFUukaBZHQMvVgLuhK151fZQoaAZoCWgPQwgysI7jxw50QJSGlFKUaBVLuWgWR0DL1YaSeRPodX2UKGgGaAloD0MIEMr7OBp/ckCUhpRSlGgVS5NoFkdAy9WImk30gHV9lChoBmgJaA9DCKFl3T/WGnRAlIaUUpRoFUu0aBZHQMvVi96C17Z1fZQoaAZoCWgPQwj1ZtR8lUVxQJSGlFKUaBVLpGgWR0DL1ZMIiTt+dX2UKGgGaAloD0MISfYINYPfcECUhpRSlGgVS6VoFkdAy9WcqOtGNXV9lChoBmgJaA9DCNxj6UMXM3FAlIaUUpRoFUu0aBZHQMvVnfy5I6N1fZQoaAZoCWgPQwiBWgweplZyQJSGlFKUaBVLnmgWR0DL1aCjk+5fdX2UKGgGaAloD0MIX+/+eC+yckCUhpRSlGgVS5BoFkdAy9WpUmUnonV9lChoBmgJaA9DCPN2hNPCyHNAlIaUUpRoFUubaBZHQMvVsy2x6fJ1fZQoaAZoCWgPQwibkNYYdOI8QJSGlFKUaBVLZWgWR0DL1bQ2S+xodX2UKGgGaAloD0MIuD8XDVnqcUCUhpRSlGgVS6poFkdAy9XBxVAAyXV9lChoBmgJaA9DCMms3uG2IHNAlIaUUpRoFUuxaBZHQMvVyC5Etul1fZQoaAZoCWgPQwikNJvHIWRyQJSGlFKUaBVLsmgWR0DL1cz+T/yYdX2UKGgGaAloD0MIuK6YEd7scUCUhpRSlGgVS6NoFkdAy9Xbz6JqI3V9lChoBmgJaA9DCEF/oUcMbHFAlIaUUpRoFUuMaBZHQMvV3MqjJuF1fZQoaAZoCWgPQwgXnwJgfJpxQJSGlFKUaBVLimgWR0DL1eN4X40udX2UKGgGaAloD0MItr5IaIthdECUhpRSlGgVS7VoFkdAy9Xjfsu3+nV9lChoBmgJaA9DCEnYt5OILXFAlIaUUpRoFUuxaBZHQMvV/Hww0wd1fZQoaAZoCWgPQwitMeiEEMNwQJSGlFKUaBVLkGgWR0DL1f8n9ehPdX2UKGgGaAloD0MIrkfhelQUc0CUhpRSlGgVS7NoFkdAy9YDbHIZInV9lChoBmgJaA9DCFlS7j6H0HFAlIaUUpRoFUujaBZHQMvWCn9vS+h1fZQoaAZoCWgPQwhP5h990+1yQJSGlFKUaBVLtGgWR0DL1gvPZ7HAdX2UKGgGaAloD0MIQDBHjx8Jc0CUhpRSlGgVS6RoFkdAy9YO/dqL0nV9lChoBmgJaA9DCNrk8EnnKnNAlIaUUpRoFUuUaBZHQMvWGGv4dp91fZQoaAZoCWgPQwin6bMDrnlyQJSGlFKUaBVLm2gWR0DL1hwOMERrdX2UKGgGaAloD0MIwaxQpPtjc0CUhpRSlGgVS79oFkdAy9Ypt7a7E3V9lChoBmgJaA9DCJF++zrwYHFAlIaUUpRoFUujaBZHQMvWMEk0Jnh1fZQoaAZoCWgPQwh6cHfWbtxwQJSGlFKUaBVLoGgWR0DL1jSn+AEudX2UKGgGaAloD0MI/yQ+d0LqcUCUhpRSlGgVS6ZoFkdAy9Y86QNkOXV9lChoBmgJaA9DCAa8zLBRH3JAlIaUUpRoFUuNaBZHQMvWQZ/9YOl1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 7328,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
30m-linlr_0_0002_after15m-ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b4138880c45148afb5c111f72330432734788a1e3eea52f923fb0e1ec7a18e4
3
+ size 88057
30m-linlr_0_0002_after15m-ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ac67d14503436aff0db07aaac3afcb534a81226e943f9ff998d956861928efc
3
+ size 43201
30m-linlr_0_0002_after15m-ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
30m-linlr_0_0002_after15m-ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Nov 23 01:01:46 UTC 2022
2
+ Python: 3.8.10
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.1+cu117
5
+ GPU Enabled: True
6
+ Numpy: 1.23.5
7
+ Gym: 0.21.0
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 289.79 +/- 15.91
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 302.96 +/- 12.17
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6d701b5f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6d701bb040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6d701bb0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6d701bb160>", "_build": "<function ActorCriticPolicy._build at 0x7f6d701bb1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6d701bb280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6d701bb310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6d701bb3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6d701bb430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6d701bb4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6d701bb550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6d701afd80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671614346339791904, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWV5AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMdAoJCVByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAuCgoJCTpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6CgkJOnJldHVybjogY3VycmVudCBsZWFybmluZyByYXRlCgkJlIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjBF1bml0MV9oYW5kcy1vbi5weZSMBGZ1bmOUSxFDAgAHlIwNaW5pdGlhbF92YWx1ZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoK3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV5AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMdAoJCVByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAuCgoJCTpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6CgkJOnJldHVybjogY3VycmVudCBsZWFybmluZyByYXRlCgkJlIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjBF1bml0MV9oYW5kcy1vbi5weZSMBGZ1bmOUSxFDAgAHlIwNaW5pdGlhbF92YWx1ZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoK3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuHTMecZTU0CUhpRSlIwBbJRLg4wBdJRHQKiA9vYvnKZ1fZQoaAZoCWgPQwhXdyy2SUJSQJSGlFKUaBVLgmgWR0CogQqjrRjSdX2UKGgGaAloD0MI9N+D1668c0CUhpRSlGgVS9VoFkdAqIFhzDGcWnV9lChoBmgJaA9DCHZR9MAHlnBAlIaUUpRoFUvVaBZHQKiBwxGlQ/J1fZQoaAZoCWgPQwgZ5gRtMo9zQJSGlFKUaBVL52gWR0Cogd7HIZIhdX2UKGgGaAloD0MI+N9Kdmxpc0CUhpRSlGgVS+9oFkdAqIIhWFN+LHV9lChoBmgJaA9DCPTF3otvgXBAlIaUUpRoFUvQaBZHQKiDdrYXfqJ1fZQoaAZoCWgPQwiyf54GDK9xQJSGlFKUaBVL5mgWR0Cog3rRBu4xdX2UKGgGaAloD0MI0Oy6t6Juc0CUhpRSlGgVS95oFkdAqIPaADq4Y3V9lChoBmgJaA9DCBZO0vwxX3FAlIaUUpRoFUvQaBZHQKiD3oIOYpl1fZQoaAZoCWgPQwhb0HtjCDdxQJSGlFKUaBVL9WgWR0Cog/2Pkq+bdX2UKGgGaAloD0MIa4DSUOMicECUhpRSlGgVS+hoFkdAqIRBhKDkEXV9lChoBmgJaA9DCARauoItQnBAlIaUUpRoFUvRaBZHQKiEeUu+RHR1fZQoaAZoCWgPQwhbecn/pDFyQJSGlFKUaBVL3GgWR0CohLwOnVG1dX2UKGgGaAloD0MIHqUSntAYX0CUhpRSlGgVTegDaBZHQKiE5wBo24x1fZQoaAZoCWgPQwjUD+oiBYhxQJSGlFKUaBVLymgWR0CohUOrp7kXdX2UKGgGaAloD0MIn5EIjWAAX0CUhpRSlGgVTegDaBZHQKiFQ7LdN351fZQoaAZoCWgPQwjThO0n44dvQJSGlFKUaBVL9WgWR0CohdUKzAvddX2UKGgGaAloD0MIQPm7d5QLckCUhpRSlGgVS7xoFkdAqIaGlImPYHV9lChoBmgJaA9DCNk+5C1XKnBAlIaUUpRoFUvNaBZHQKiHUPpY9xJ1fZQoaAZoCWgPQwj2l92TB/BzQJSGlFKUaBVL1mgWR0Coh1o1UEPldX2UKGgGaAloD0MIS3MrhFV/c0CUhpRSlGgVS8BoFkdAqIdew9q1xHV9lChoBmgJaA9DCM2v5gDB6HFAlIaUUpRoFUvraBZHQKiHrzundft1fZQoaAZoCWgPQwi862zIP41OQJSGlFKUaBVLmWgWR0Coh8AzpHI7dX2UKGgGaAloD0MI2bW93ZIbcUCUhpRSlGgVS89oFkdAqIfVmg8KX3V9lChoBmgJaA9DCCuIga49M3BAlIaUUpRoFUvOaBZHQKiIFVd5Y5l1fZQoaAZoCWgPQwjE7GXbaRlmQJSGlFKUaBVN6ANoFkdAqIg7akAPu3V9lChoBmgJaA9DCORJ0jWTgUlAlIaUUpRoFUuoaBZHQKiIljSXt0F1fZQoaAZoCWgPQwjnASzyaxtwQJSGlFKUaBVL8GgWR0CoiMuscQyzdX2UKGgGaAloD0MIhuP5DGhYcECUhpRSlGgVS91oFkdAqIjbWK/EfnV9lChoBmgJaA9DCP35tmApZmNAlIaUUpRoFU3oA2gWR0CoiPYxL0z1dX2UKGgGaAloD0MIX5fhP12kckCUhpRSlGgVTd0BaBZHQKiZnRaX8fp1fZQoaAZoCWgPQwgfEVMiyapxQJSGlFKUaBVL42gWR0Comd6unuRcdX2UKGgGaAloD0MIih9j7polcECUhpRSlGgVS85oFkdAqJo+/k/8mHV9lChoBmgJaA9DCCJUqdkDDHJAlIaUUpRoFUvhaBZHQKiadrDZUUB1fZQoaAZoCWgPQwgBUMWNm4BzQJSGlFKUaBVL62gWR0Comp5hKDkEdX2UKGgGaAloD0MIIhyz7AnzcUCUhpRSlGgVS9NoFkdAqJqecpb2UXV9lChoBmgJaA9DCNWT+UefNnJAlIaUUpRoFUv3aBZHQKibDNqQA+91fZQoaAZoCWgPQwiRCfg1EiBzQJSGlFKUaBVL+mgWR0ComziE6DGtdX2UKGgGaAloD0MIN4qsNRSZcECUhpRSlGgVS+9oFkdAqJtG4Cp3o3V9lChoBmgJaA9DCNxHbk16WnBAlIaUUpRoFUvUaBZHQKibkuJUHY91fZQoaAZoCWgPQwjJ5T+k32BxQJSGlFKUaBVL4GgWR0Com6+Pq9oOdX2UKGgGaAloD0MIuD8XDdmacUCUhpRSlGgVS9loFkdAqJu9hJAdGXV9lChoBmgJaA9DCApnt5bJoHNAlIaUUpRoFU0cAWgWR0ConAzd+G47dX2UKGgGaAloD0MICAPPvQfhc0CUhpRSlGgVTQgBaBZHQKicE+6Ae7t1fZQoaAZoCWgPQwhHPq94KrhxQJSGlFKUaBVL0WgWR0ConHidJ8OTdX2UKGgGaAloD0MICFqBIWsQcUCUhpRSlGgVS91oFkdAqJzt7SiM53V9lChoBmgJaA9DCP+wpUdT9HFAlIaUUpRoFUu4aBZHQKidM/0NBnl1fZQoaAZoCWgPQwiEfxE0ZvJwQJSGlFKUaBVL/mgWR0CondSFoL5RdX2UKGgGaAloD0MIcHuCxHaZc0CUhpRSlGgVS/JoFkdAqJ3j2g398HV9lChoBmgJaA9DCABw7NkzqnBAlIaUUpRoFUvpaBZHQKid7zOoo/l1fZQoaAZoCWgPQwiQMuIC0NpvQJSGlFKUaBVL1WgWR0Conk4msvIwdX2UKGgGaAloD0MIsp3vp8b/b0CUhpRSlGgVS9hoFkdAqJ5os7MgU3V9lChoBmgJaA9DCOtunupQtXFAlIaUUpRoFUvIaBZHQKieeuNgjQl1fZQoaAZoCWgPQwjog2VsKIJxQJSGlFKUaBVLwWgWR0Cono21MM7VdX2UKGgGaAloD0MIIlLTLibqcECUhpRSlGgVTQEBaBZHQKiew5avA451fZQoaAZoCWgPQwjon+Bixf5xQJSGlFKUaBVLxGgWR0ConuyTQmeEdX2UKGgGaAloD0MI6L6c2a46TkCUhpRSlGgVS6BoFkdAqJ9C4Ds+mnV9lChoBmgJaA9DCCqoqPrVzHFAlIaUUpRoFUvraBZHQKifdPPcBU91fZQoaAZoCWgPQwgP0egOIi9zQJSGlFKUaBVNIgFoFkdAqJ/d5yEL6XV9lChoBmgJaA9DCDfhXpk3RnJAlIaUUpRoFUvzaBZHQKigAUZeiSJ1fZQoaAZoCWgPQwgLYTWWMMJzQJSGlFKUaBVLyGgWR0CooBkrXlKcdX2UKGgGaAloD0MIwY7/AkE8Y0CUhpRSlGgVTegDaBZHQKigY1baAWl1fZQoaAZoCWgPQwh72uGvySxNQJSGlFKUaBVLlmgWR0CooG4zrNW3dX2UKGgGaAloD0MIqrhxi3kfb0CUhpRSlGgVS81oFkdAqKC91hb4anV9lChoBmgJaA9DCIQsCyZ+2HFAlIaUUpRoFUvUaBZHQKig4nP3SKF1fZQoaAZoCWgPQwhbJy7Ha5pxQJSGlFKUaBVL2GgWR0CooPkH+qBFdX2UKGgGaAloD0MIA3rhzgWEcUCUhpRSlGgVS8FoFkdAqKEzn/1g6XV9lChoBmgJaA9DCB8vpMNDXVBAlIaUUpRoFUuPaBZHQKihM9ECvHN1fZQoaAZoCWgPQwirIAa6NuJyQJSGlFKUaBVL4WgWR0CooY0bcXWOdX2UKGgGaAloD0MIAruaPOUzb0CUhpRSlGgVS9loFkdAqKG0bBGhEnV9lChoBmgJaA9DCPgzvFmDj3BAlIaUUpRoFU0JAWgWR0CoogS3solVdX2UKGgGaAloD0MIcM0d/S+aX0CUhpRSlGgVTegDaBZHQKiiBSJCSid1fZQoaAZoCWgPQwidLouJTQpzQJSGlFKUaBVL72gWR0CooiRAjY7JdX2UKGgGaAloD0MIJlEv+PQ8cUCUhpRSlGgVS+ZoFkdAqKJ9J6IFeXV9lChoBmgJaA9DCDXQfM7dgXBAlIaUUpRoFUvHaBZHQKiimZof0Vd1fZQoaAZoCWgPQwgZq83/ax5yQJSGlFKUaBVLxWgWR0CoovWQOnVHdX2UKGgGaAloD0MIqUpbXONjcECUhpRSlGgVS95oFkdAqKL78aXKKnV9lChoBmgJaA9DCO5dg7600XJAlIaUUpRoFUvxaBZHQKijAjgydnV1fZQoaAZoCWgPQwhZNQhz+91xQJSGlFKUaBVLxGgWR0Coo4fSH/LldX2UKGgGaAloD0MIPzbJj3gob0CUhpRSlGgVS/BoFkdAqKPsngHeJ3V9lChoBmgJaA9DCM+EJollCXFAlIaUUpRoFU0PAWgWR0Coo/un/DLsdX2UKGgGaAloD0MI6DHKM6+GbUCUhpRSlGgVS9BoFkdAqKP7fFaStHV9lChoBmgJaA9DCPYmhuQkM3NAlIaUUpRoFUvKaBZHQKikQ4m1IAh1fZQoaAZoCWgPQwhBEYsYtjdyQJSGlFKUaBVNAAFoFkdAqKRJx95Qg3V9lChoBmgJaA9DCFMlyt6SI3FAlIaUUpRoFUvPaBZHQKikegTRIBl1fZQoaAZoCWgPQwgTSfQyin1QQJSGlFKUaBVLj2gWR0CopI5k9U0fdX2UKGgGaAloD0MIPPceLjk/cUCUhpRSlGgVS85oFkdAqKTCBK+SKXV9lChoBmgJaA9DCK6dKAlJpXBAlIaUUpRoFUvVaBZHQKik2OjqOcV1fZQoaAZoCWgPQwj0MR8QaPlxQJSGlFKUaBVL2WgWR0CopQatcObzdX2UKGgGaAloD0MIPYGwU6wkdECUhpRSlGgVS8FoFkdAqKUSDXe3yHV9lChoBmgJaA9DCAvPS8VGWXFAlIaUUpRoFU0qAWgWR0CopSE1uR9xdX2UKGgGaAloD0MI9nr3x3srb0CUhpRSlGgVS6poFkdAqKVFpEhJRXV9lChoBmgJaA9DCFHYRdGDsm9AlIaUUpRoFUvOaBZHQKilqKYRdyF1fZQoaAZoCWgPQwhRMc7fRLtyQJSGlFKUaBVL6GgWR0CopgX6Q/5ddX2UKGgGaAloD0MImGvRAnS1ckCUhpRSlGgVS9xoFkdAqKZfEETxonV9lChoBmgJaA9DCD8Z48OsxXFAlIaUUpRoFUu+aBZHQKimp+/gzgx1fZQoaAZoCWgPQwgQdR+AlINxQJSGlFKUaBVL2WgWR0Coprtmthd/dX2UKGgGaAloD0MINQhzu5fhSkCUhpRSlGgVS4hoFkdAqKbIfnwG4nV9lChoBmgJaA9DCJ7RViWRkXRAlIaUUpRoFUvmaBZHQKim2WOZLIx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc758f64ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc758f64f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc758f69040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc758f690d0>", "_build": "<function ActorCriticPolicy._build at 0x7fc758f69160>", "forward": "<function ActorCriticPolicy.forward at 0x7fc758f691f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc758f69280>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc758f69310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc758f693a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc758f69430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc758f694c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc758f5dd80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 15007744, "_total_timesteps": 15000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671624067694421098, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWV5AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMdAoJCVByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAuCgoJCTpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6CgkJOnJldHVybjogY3VycmVudCBsZWFybmluZyByYXRlCgkJlIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjBF1bml0MV9oYW5kcy1vbi5weZSMBGZ1bmOUSxFDAgAHlIwNaW5pdGlhbF92YWx1ZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoK3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Kjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV5AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMdAoJCVByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAuCgoJCTpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6CgkJOnJldHVybjogY3VycmVudCBsZWFybmluZyByYXRlCgkJlIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjBF1bml0MV9oYW5kcy1vbi5weZSMBGZ1bmOUSxFDAgAHlIwNaW5pdGlhbF92YWx1ZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoK3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Kjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0005162666666667093, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjEzAr5HLcUCUhpRSlIwBbJRLg4wBdJRHQMvTptYKYzB1fZQoaAZoCWgPQwjCMcueBL1wQJSGlFKUaBVLmGgWR0DL06ogNgBtdX2UKGgGaAloD0MIbm3heaksb0CUhpRSlGgVS5FoFkdAy9O1+CsfaHV9lChoBmgJaA9DCNttF5prmnNAlIaUUpRoFUuqaBZHQMvTyK9wm3R1fZQoaAZoCWgPQwgdjxmojBxzQJSGlFKUaBVLu2gWR0DL08vLHMlkdX2UKGgGaAloD0MIJA9EFik7ckCUhpRSlGgVS65oFkdAy9PNfrKNhnV9lChoBmgJaA9DCAYOaOmK4XFAlIaUUpRoFUuhaBZHQMvT0DlYEGJ1fZQoaAZoCWgPQwito6oJouJxQJSGlFKUaBVLtGgWR0DL09aDoQnQdX2UKGgGaAloD0MI2hoRjMPtcUCUhpRSlGgVS6toFkdAy9PdQJokA3V9lChoBmgJaA9DCDwUBfoElXRAlIaUUpRoFUu1aBZHQMvT4dPci4d1fZQoaAZoCWgPQwjPZWoS/G5zQJSGlFKUaBVLnWgWR0DL0+Ol/H5rdX2UKGgGaAloD0MIAWn/A+xVc0CUhpRSlGgVS6hoFkdAy9PjubZvk3V9lChoBmgJaA9DCGPRdHby0nJAlIaUUpRoFUuwaBZHQMvT6IpYs/Z1fZQoaAZoCWgPQwhDIJc48mNxQJSGlFKUaBVLkGgWR0DL0+laMaS+dX2UKGgGaAloD0MINlt5yb/5cUCUhpRSlGgVS6xoFkdAy9QBYW+GoXV9lChoBmgJaA9DCFMkXwnkFHFAlIaUUpRoFUunaBZHQMvUBiEQGwB1fZQoaAZoCWgPQwiTc2IPLQ50QJSGlFKUaBVLt2gWR0DL1BH4mCyydX2UKGgGaAloD0MIxomvdtRkcUCUhpRSlGgVS5xoFkdAy9QRuejEenV9lChoBmgJaA9DCOaRPxi4K3JAlIaUUpRoFUuzaBZHQMvUEzguRLd1fZQoaAZoCWgPQwgnoImwYUJwQJSGlFKUaBVLlWgWR0DL1CI0fozOdX2UKGgGaAloD0MIGjOJeoFtcUCUhpRSlGgVS5FoFkdAy9QndUsFuHV9lChoBmgJaA9DCAys4/hh43FAlIaUUpRoFUt5aBZHQMvULf0Eov11fZQoaAZoCWgPQwhNZVHYxVlwQJSGlFKUaBVLo2gWR0DL1DCfg75mdX2UKGgGaAloD0MIIcuCib8rckCUhpRSlGgVS5JoFkdAy9Q3SRbKR3V9lChoBmgJaA9DCKZG6Gfq4nFAlIaUUpRoFUuyaBZHQMvUOIfjjrB1fZQoaAZoCWgPQwgIdCZtKm9zQJSGlFKUaBVLsGgWR0DL1EMAzYVZdX2UKGgGaAloD0MIQfD49q4XcECUhpRSlGgVS5FoFkdAy9RDtGd7OXV9lChoBmgJaA9DCHKJIw8ESnJAlIaUUpRoFUueaBZHQMvURkfs/pt1fZQoaAZoCWgPQwg4TZ8d8H1xQJSGlFKUaBVLsWgWR0DL1FBf8dgfdX2UKGgGaAloD0MI7FG4HkWBcECUhpRSlGgVS7NoFkdAy9Rawosqa3V9lChoBmgJaA9DCIiE7/1N83FAlIaUUpRoFUuMaBZHQMvUbSfDk2h1fZQoaAZoCWgPQwjBkNWtniJxQJSGlFKUaBVLo2gWR0DL1HGB+WnkdX2UKGgGaAloD0MIq3tkc9W3c0CUhpRSlGgVS69oFkdAy9R06mO2iXV9lChoBmgJaA9DCH433bKDZHNAlIaUUpRoFUucaBZHQMvUeaN2ki51fZQoaAZoCWgPQwhn8zgMJsJxQJSGlFKUaBVLhWgWR0DL1H98eCCjdX2UKGgGaAloD0MI8aFES564c0CUhpRSlGgVS7poFkdAy9SM6shgV3V9lChoBmgJaA9DCAqEnWKVnnFAlIaUUpRoFUubaBZHQMvUlPCl7+l1fZQoaAZoCWgPQwi95erH5hRzQJSGlFKUaBVLsGgWR0DL1Jbru6VddX2UKGgGaAloD0MIx/MZUK9pcUCUhpRSlGgVS6ZoFkdAy9SmMmWt2nV9lChoBmgJaA9DCG73cp8c7nFAlIaUUpRoFUutaBZHQMvUrKCQLeB1fZQoaAZoCWgPQwiN7iB2pthzQJSGlFKUaBVLomgWR0DL1LEhcJMQdX2UKGgGaAloD0MIsP86N21Lb0CUhpRSlGgVS6NoFkdAy9S0cH4XXXV9lChoBmgJaA9DCFABMJ6BuXJAlIaUUpRoFUuqaBZHQMvUthNM4951fZQoaAZoCWgPQwiRt1z9WJ10QJSGlFKUaBVLy2gWR0DL1Lk8V58jdX2UKGgGaAloD0MIi28ofPYVdECUhpRSlGgVS7RoFkdAy9TVgdfb9XV9lChoBmgJaA9DCLa7B+i+1HNAlIaUUpRoFUvKaBZHQMvU2cohIOJ1fZQoaAZoCWgPQwhqhH6mHg5yQJSGlFKUaBVLq2gWR0DL1OLJ2dNGdX2UKGgGaAloD0MIMZqV7cPDcECUhpRSlGgVS6BoFkdAy9Tnx1gYxnV9lChoBmgJaA9DCKFHjJ4b8nNAlIaUUpRoFUutaBZHQMvU68y31Bd1fZQoaAZoCWgPQwgYXHNHvx9yQJSGlFKUaBVLp2gWR0DL1PHuTibVdX2UKGgGaAloD0MIpg2HpYEJdECUhpRSlGgVS8FoFkdAy9T1v863iXV9lChoBmgJaA9DCNx++WRFMXRAlIaUUpRoFUuyaBZHQMvVBwpWmxd1fZQoaAZoCWgPQwhGQ8aj1NNxQJSGlFKUaBVLrGgWR0DL1QskQf6odX2UKGgGaAloD0MI0xdCzvuUcUCUhpRSlGgVS6loFkdAy9ULKSPluHV9lChoBmgJaA9DCJD11OqrZW9AlIaUUpRoFUuQaBZHQMvVE5AhStN1fZQoaAZoCWgPQwg1fuGVpIxyQJSGlFKUaBVLimgWR0DL1RRcophGdX2UKGgGaAloD0MIVBuciP79c0CUhpRSlGgVS7xoFkdAy9UnGIbfg3V9lChoBmgJaA9DCKzhIve0znNAlIaUUpRoFUuzaBZHQMvVJxrrPdF1fZQoaAZoCWgPQwgpIVhVr7VyQJSGlFKUaBVLomgWR0DL1SfCGetkdX2UKGgGaAloD0MIxEMYPw27ckCUhpRSlGgVS7ZoFkdAy9UwIHkcTHV9lChoBmgJaA9DCLBYw0Xu43BAlIaUUpRoFUuSaBZHQMvVOE0rK/51fZQoaAZoCWgPQwhHrwYoTQ1zQJSGlFKUaBVLqGgWR0DL1Us8mrsCdX2UKGgGaAloD0MIiNnLtpPMc0CUhpRSlGgVS59oFkdAy9VN9fCyhXV9lChoBmgJaA9DCMiZJmz/5HJAlIaUUpRoFUuQaBZHQMvVUu8kD6p1fZQoaAZoCWgPQwjFO8CTlgRzQJSGlFKUaBVLnGgWR0DL1VTrmhdudX2UKGgGaAloD0MInIcTmE4Dc0CUhpRSlGgVS6hoFkdAy9VYtU4rBnV9lChoBmgJaA9DCMO5hhkaFnBAlIaUUpRoFUuRaBZHQMvVa/I8yN51fZQoaAZoCWgPQwiSWb3DLThyQJSGlFKUaBVLt2gWR0DL1XDM3ZPEdX2UKGgGaAloD0MI81gzMsiWc0CUhpRSlGgVS6FoFkdAy9VzCemNznV9lChoBmgJaA9DCP0RhgELYHJAlIaUUpRoFUukaBZHQMvVgLuhK151fZQoaAZoCWgPQwgysI7jxw50QJSGlFKUaBVLuWgWR0DL1YaSeRPodX2UKGgGaAloD0MIEMr7OBp/ckCUhpRSlGgVS5NoFkdAy9WImk30gHV9lChoBmgJaA9DCKFl3T/WGnRAlIaUUpRoFUu0aBZHQMvVi96C17Z1fZQoaAZoCWgPQwj1ZtR8lUVxQJSGlFKUaBVLpGgWR0DL1ZMIiTt+dX2UKGgGaAloD0MISfYINYPfcECUhpRSlGgVS6VoFkdAy9WcqOtGNXV9lChoBmgJaA9DCNxj6UMXM3FAlIaUUpRoFUu0aBZHQMvVnfy5I6N1fZQoaAZoCWgPQwiBWgweplZyQJSGlFKUaBVLnmgWR0DL1aCjk+5fdX2UKGgGaAloD0MIX+/+eC+yckCUhpRSlGgVS5BoFkdAy9WpUmUnonV9lChoBmgJaA9DCPN2hNPCyHNAlIaUUpRoFUubaBZHQMvVsy2x6fJ1fZQoaAZoCWgPQwibkNYYdOI8QJSGlFKUaBVLZWgWR0DL1bQ2S+xodX2UKGgGaAloD0MIuD8XDVnqcUCUhpRSlGgVS6poFkdAy9XBxVAAyXV9lChoBmgJaA9DCMms3uG2IHNAlIaUUpRoFUuxaBZHQMvVyC5Etul1fZQoaAZoCWgPQwikNJvHIWRyQJSGlFKUaBVLsmgWR0DL1cz+T/yYdX2UKGgGaAloD0MIuK6YEd7scUCUhpRSlGgVS6NoFkdAy9Xbz6JqI3V9lChoBmgJaA9DCEF/oUcMbHFAlIaUUpRoFUuMaBZHQMvV3MqjJuF1fZQoaAZoCWgPQwgXnwJgfJpxQJSGlFKUaBVLimgWR0DL1eN4X40udX2UKGgGaAloD0MItr5IaIthdECUhpRSlGgVS7VoFkdAy9Xjfsu3+nV9lChoBmgJaA9DCEnYt5OILXFAlIaUUpRoFUuxaBZHQMvV/Hww0wd1fZQoaAZoCWgPQwitMeiEEMNwQJSGlFKUaBVLkGgWR0DL1f8n9ehPdX2UKGgGaAloD0MIrkfhelQUc0CUhpRSlGgVS7NoFkdAy9YDbHIZInV9lChoBmgJaA9DCFlS7j6H0HFAlIaUUpRoFUujaBZHQMvWCn9vS+h1fZQoaAZoCWgPQwhP5h990+1yQJSGlFKUaBVLtGgWR0DL1gvPZ7HAdX2UKGgGaAloD0MIQDBHjx8Jc0CUhpRSlGgVS6RoFkdAy9YO/dqL0nV9lChoBmgJaA9DCNrk8EnnKnNAlIaUUpRoFUuUaBZHQMvWGGv4dp91fZQoaAZoCWgPQwin6bMDrnlyQJSGlFKUaBVLm2gWR0DL1hwOMERrdX2UKGgGaAloD0MIwaxQpPtjc0CUhpRSlGgVS79oFkdAy9Ypt7a7E3V9lChoBmgJaA9DCJF++zrwYHFAlIaUUpRoFUujaBZHQMvWMEk0Jnh1fZQoaAZoCWgPQwh6cHfWbtxwQJSGlFKUaBVLoGgWR0DL1jSn+AEudX2UKGgGaAloD0MI/yQ+d0LqcUCUhpRSlGgVS6ZoFkdAy9Y86QNkOXV9lChoBmgJaA9DCAa8zLBRH3JAlIaUUpRoFUuNaBZHQMvWQZ/9YOl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7328, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 289.7889313, "std_reward": 15.905510942654882, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T11:28:04.899835"}
 
1
+ {"mean_reward": 302.96265780000004, "std_reward": 12.170855501809033, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T18:20:27.608387"}