Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -21,9 +21,9 @@ widget:
|
|
21 |
---
|
22 |
|
23 |
|
24 |
-
#
|
25 |
|
26 |
-
|
27 |
|
28 |
The model will give you a three labels: positive, negative and neutral.
|
29 |
|
@@ -34,7 +34,7 @@ You can use this model directly with a pipeline for sentiment-analysis:
|
|
34 |
```python
|
35 |
from transformers import pipeline
|
36 |
|
37 |
-
nlp = pipeline("sentiment-analysis", model="bardsai/
|
38 |
nlp("Sprzedaż netto wzrosła o 30% do 36 mln EUR.")
|
39 |
```
|
40 |
```bash
|
@@ -53,6 +53,7 @@ nlp("Sprzedaż netto wzrosła o 30% do 36 mln EUR.")
|
|
53 |
(The performance was evaluated on RTX 3090 gpu)
|
54 |
|
55 |
## Changelog
|
|
|
56 |
- 2022-11-15: Initial release
|
57 |
|
58 |
## About bards.ai
|
|
|
21 |
---
|
22 |
|
23 |
|
24 |
+
# Finance Sentiment PL (base)
|
25 |
|
26 |
+
Finance Sentiment PL (base) is a model based on [herbert-base](https://huggingface.co/allegro/herbert-base-cased) for analyzing sentiment of Polish financial news. It was trained on the translated version of [Financial PhraseBank](https://www.researchgate.net/publication/251231107_Good_Debt_or_Bad_Debt_Detecting_Semantic_Orientations_in_Economic_Texts) by Malo et al. (20014) for 10 epochs on single RTX3090 gpu.
|
27 |
|
28 |
The model will give you a three labels: positive, negative and neutral.
|
29 |
|
|
|
34 |
```python
|
35 |
from transformers import pipeline
|
36 |
|
37 |
+
nlp = pipeline("sentiment-analysis", model="bardsai/finance-sentiment-pl-base")
|
38 |
nlp("Sprzedaż netto wzrosła o 30% do 36 mln EUR.")
|
39 |
```
|
40 |
```bash
|
|
|
53 |
(The performance was evaluated on RTX 3090 gpu)
|
54 |
|
55 |
## Changelog
|
56 |
+
- 2022-12-01: Rename the model to finance-sentiment-pl-base
|
57 |
- 2022-11-15: Initial release
|
58 |
|
59 |
## About bards.ai
|