bardofcodes commited on
Commit
e64fd7c
·
verified ·
1 Parent(s): d83c313

Update pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +3 -331
pipeline.py CHANGED
@@ -33,337 +33,9 @@ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineO
33
 
34
  from diffusers.configuration_utils import ConfigMixin, register_to_config
35
  # REf: https://github.com/tatp22/multidim-positional-encoding/tree/master
36
-
37
-
38
- OUT_SIZE = 768
39
- IN_SIZE = 2048
40
-
41
- DINO_SIZE = 224
42
- DINO_MEAN = [0.485, 0.456, 0.406]
43
- DINO_STD = [0.229, 0.224, 0.225]
44
-
45
- SIGLIP_SIZE = 256
46
- SIGLIP_MEAN = [0.5]
47
- SIGLIP_STD = [0.5]
48
-
49
-
50
- def get_emb(sin_inp):
51
- """
52
- Gets a base embedding for one dimension with sin and cos intertwined
53
- """
54
- emb = th.stack((sin_inp.sin(), sin_inp.cos()), dim=-1)
55
- return th.flatten(emb, -2, -1)
56
-
57
-
58
- class PositionalEncoding1D(nn.Module):
59
- def __init__(self, channels):
60
- """
61
- :param channels: The last dimension of the tensor you want to apply pos emb to.
62
- """
63
- super(PositionalEncoding1D, self).__init__()
64
- self.org_channels = channels
65
- channels = int(np.ceil(channels / 2) * 2)
66
- self.channels = channels
67
- inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels))
68
- self.register_buffer("inv_freq", inv_freq)
69
- self.register_buffer("cached_penc", None, persistent=False)
70
-
71
- def forward(self, tensor):
72
- """
73
- :param tensor: A 3d tensor of size (batch_size, x, ch)
74
- :return: Positional Encoding Matrix of size (batch_size, x, ch)
75
- """
76
- if len(tensor.shape) != 3:
77
- raise RuntimeError("The input tensor has to be 3d!")
78
-
79
- if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
80
- return self.cached_penc
81
-
82
- self.cached_penc = None
83
- batch_size, x, orig_ch = tensor.shape
84
- pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
85
- sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq)
86
- emb_x = get_emb(sin_inp_x)
87
- emb = th.zeros((x, self.channels), device=tensor.device, dtype=tensor.dtype)
88
- emb[:, : self.channels] = emb_x
89
-
90
- self.cached_penc = emb[None, :, :orig_ch].repeat(batch_size, 1, 1)
91
- return self.cached_penc
92
-
93
-
94
-
95
- class PositionalEncoding3D(nn.Module):
96
- def __init__(self, channels):
97
- """
98
- :param channels: The last dimension of the tensor you want to apply pos emb to.
99
- """
100
- super(PositionalEncoding3D, self).__init__()
101
- self.org_channels = channels
102
- channels = int(np.ceil(channels / 6) * 2)
103
- if channels % 2:
104
- channels += 1
105
- self.channels = channels
106
- inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels))
107
- self.register_buffer("inv_freq", inv_freq)
108
- self.register_buffer("cached_penc", None, persistent=False)
109
-
110
- def forward(self, tensor):
111
- """
112
- :param tensor: A 5d tensor of size (batch_size, x, y, z, ch)
113
- :return: Positional Encoding Matrix of size (batch_size, x, y, z, ch)
114
- """
115
- if len(tensor.shape) != 5:
116
- raise RuntimeError("The input tensor has to be 5d!")
117
-
118
- if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
119
- return self.cached_penc
120
-
121
- self.cached_penc = None
122
- batch_size, x, y, z, orig_ch = tensor.shape
123
- pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
124
- pos_y = th.arange(y, device=tensor.device, dtype=self.inv_freq.dtype)
125
- pos_z = th.arange(z, device=tensor.device, dtype=self.inv_freq.dtype)
126
- sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq)
127
- sin_inp_y = th.einsum("i,j->ij", pos_y, self.inv_freq)
128
- sin_inp_z = th.einsum("i,j->ij", pos_z, self.inv_freq)
129
- emb_x = get_emb(sin_inp_x).unsqueeze(1).unsqueeze(1)
130
- emb_y = get_emb(sin_inp_y).unsqueeze(1)
131
- emb_z = get_emb(sin_inp_z)
132
- emb = th.zeros(
133
- (x, y, z, self.channels * 3),
134
- device=tensor.device,
135
- dtype=tensor.dtype,
136
- )
137
- emb[:, :, :, : self.channels] = emb_x
138
- emb[:, :, :, self.channels : 2 * self.channels] = emb_y
139
- emb[:, :, :, 2 * self.channels :] = emb_z
140
-
141
- self.cached_penc = emb[None, :, :, :, :orig_ch].repeat(batch_size, 1, 1, 1, 1)
142
- return self.cached_penc
143
-
144
- class AnalogyInputProcessor(ModelMixin, ConfigMixin):
145
-
146
- @register_to_config
147
- def __init__(self,):
148
- super(AnalogyInputProcessor, self).__init__()
149
-
150
- self.dino_transform = transforms.Compose(
151
- [
152
- transforms.Resize((DINO_SIZE, DINO_SIZE)),
153
- transforms.ToTensor(),
154
- transforms.Normalize(DINO_MEAN, DINO_STD), # SIGLIP normalization
155
- ]
156
- )
157
-
158
- self.siglip_transform = transforms.Compose(
159
- [
160
- transforms.Resize((SIGLIP_SIZE, SIGLIP_SIZE)),
161
- transforms.ToTensor(),
162
- transforms.Normalize(SIGLIP_MEAN, SIGLIP_STD), # SIGLIP normalization
163
- ]
164
- )
165
-
166
- dino_mean = th.tensor(DINO_MEAN).view(1, 3, 1, 1)
167
- dino_std = th.tensor(DINO_STD).view(1, 3, 1, 1)
168
- siglip_mean = [SIGLIP_MEAN[0],] * 3
169
- siglip_std = [SIGLIP_STD[0],] * 3
170
- siglip_mean = th.tensor(siglip_mean).view(1, 3, 1, 1)
171
- siglip_std = th.tensor(siglip_std).view(1, 3, 1, 1)
172
- self.register_buffer("dino_mean", dino_mean)
173
- self.register_buffer("dino_std", dino_std)
174
- self.register_buffer("siglip_mean", siglip_mean)
175
- self.register_buffer("siglip_std", siglip_std)
176
-
177
- def __call__(self, analogy_prompt):
178
- # List of tuples of (A, A*, B)
179
- img_a_dino = []
180
- img_a_siglip = []
181
- img_a_star_dino = []
182
- img_a_star_siglip = []
183
- img_b_dino = []
184
- img_b_siglip = []
185
-
186
- for im_set in analogy_prompt:
187
- img_a, img_a_star, img_b = im_set
188
- img_a_dino.append(self.dino_transform(img_a))
189
- img_a_siglip.append(self.siglip_transform(img_a))
190
- img_a_star_dino.append(self.dino_transform(img_a_star))
191
- img_a_star_siglip.append(self.siglip_transform(img_a_star))
192
- img_b_dino.append(self.dino_transform(img_b))
193
- img_b_siglip.append(self.siglip_transform(img_b))
194
-
195
- img_a_dino = th.stack(img_a_dino, 0)
196
- img_a_siglip = th.stack(img_a_siglip, 0)
197
- img_a_star_dino = th.stack(img_a_star_dino, 0)
198
- img_a_star_siglip = th.stack(img_a_star_siglip, 0)
199
- img_b_dino = th.stack(img_b_dino, 0)
200
- img_b_siglip = th.stack(img_b_siglip, 0)
201
-
202
- dino_combined_input = th.stack([img_b_dino, img_a_dino, img_a_star_dino], 0)
203
- siglip_combined_input = th.stack([img_b_siglip, img_a_siglip, img_a_star_siglip], 0)
204
-
205
- return dino_combined_input, siglip_combined_input
206
- def get_negative(self, dino_in, siglip_in):
207
-
208
- dino_i = ((dino_in * 0 + 0.5) - self.dino_mean) / self.dino_std
209
- siglip_i = ((siglip_in * 0 + 0.5) - self.siglip_mean) / self.siglip_std
210
- return dino_i, siglip_i
211
-
212
-
213
- class AnalogyProjector(ModelMixin, ConfigMixin):
214
-
215
- @register_to_config
216
- def __init__(self):
217
- super(AnalogyProjector, self).__init__()
218
- self.projector = DinoSiglipMixer()
219
- self.pos_embd_1D = PositionalEncoding1D(OUT_SIZE)
220
- self.pos_embd_3D = PositionalEncoding3D(OUT_SIZE)
221
-
222
-
223
- def forward(self, dino_in, siglip_in, batch_size):
224
-
225
- image_embeddings = self.projector(dino_in, siglip_in)
226
-
227
- image_embeddings = einops.rearrange(image_embeddings, '(k b) t d -> b k t d', b=batch_size)
228
- image_embeddings = self.position_embd(image_embeddings)
229
- return image_embeddings
230
-
231
- def position_embd(self, image_embeddings, concat=False):
232
- canvas_embd = image_embeddings[:, :, 1:, :]
233
- batch_size = canvas_embd.shape[0]
234
- type_size = canvas_embd.shape[1]
235
- xy_size = canvas_embd.shape[2]
236
-
237
- x_size = int(xy_size ** 0.5)
238
-
239
- canvas_embd = canvas_embd.reshape(batch_size, type_size, x_size, x_size, -1)
240
- if concat:
241
- canvas_embd = th.cat([canvas_embd, self.pos_embd_3D(canvas_embd)], -1)
242
- else:
243
- canvas_embd = self.pos_embd_3D(canvas_embd) + canvas_embd
244
- canvas_embd = canvas_embd.reshape(batch_size, type_size, xy_size, -1)
245
-
246
- class_embd = image_embeddings[:, :, 0, :]
247
- if concat:
248
- class_embd = th.cat([class_embd, self.pos_embd_1D(class_embd)], -1)
249
- else:
250
- class_embd = self.pos_embd_1D(class_embd) + class_embd
251
- all_embd_list = []
252
- for i in range(type_size):
253
- all_embd_list.append(class_embd[:, i:i+1])
254
- all_embd_list.append(canvas_embd[:, i])
255
- image_embeddings = th.cat(all_embd_list, 1)
256
- return image_embeddings
257
-
258
-
259
- class HighLowMixer(th.nn.Module):
260
- def __init__(self, in_size=IN_SIZE, out_size=OUT_SIZE):
261
- super().__init__()
262
- mid_size = (in_size + out_size) // 2
263
-
264
- self.lower_projector = th.nn.Sequential(
265
- th.nn.LayerNorm(IN_SIZE//2),
266
- th.nn.SiLU()
267
- )
268
- self.upper_projector = th.nn.Sequential(
269
- th.nn.LayerNorm(IN_SIZE//2),
270
- th.nn.SiLU()
271
- )
272
- self.projectors = th.nn.ModuleList([
273
- # add layer norm
274
- th.nn.Linear(in_size, mid_size),
275
- th.nn.SiLU(),
276
- th.nn.Linear(mid_size, out_size)
277
- ])
278
- # initialize
279
- for proj in self.projectors:
280
- if isinstance(proj, th.nn.Linear):
281
- th.nn.init.xavier_uniform_(proj.weight)
282
- th.nn.init.zeros_(proj.bias)
283
-
284
- def forward(self, lower_in, upper_in, ):
285
- # ALso format lower_in
286
- lower_in = self.lower_projector(lower_in)
287
- upper_in = self.upper_projector(upper_in)
288
- x = th.cat([lower_in, upper_in], -1)
289
- for proj in self.projectors:
290
- x = proj(x)
291
- return x
292
-
293
- class DinoSiglipMixer(th.nn.Module):
294
- def __init__(self, in_size=OUT_SIZE * 2, out_size=OUT_SIZE):
295
- super().__init__()
296
- self.dino_projector = HighLowMixer()
297
- self.siglip_projector = HighLowMixer()
298
- self.projectors = th.nn.Sequential(
299
- th.nn.SiLU(),
300
- th.nn.Linear(in_size, out_size),
301
- )
302
- # initialize
303
- for proj in self.projectors:
304
- if isinstance(proj, th.nn.Linear):
305
- th.nn.init.xavier_uniform_(proj.weight)
306
- th.nn.init.zeros_(proj.bias)
307
-
308
-
309
- def forward(self, dino_in, siglip_in):
310
- # ALso format lower_in
311
- lower, upper = th.chunk(dino_in, 2, -1)
312
- dino_out = self.dino_projector(lower, upper)
313
- lower, upper = th.chunk(siglip_in, 2, -1)
314
- siglip_out = self.siglip_projector(lower, upper)
315
- x = th.cat([dino_out, siglip_out], -1)
316
- for proj in self.projectors:
317
- x = proj(x)
318
- return x
319
-
320
- class AnalogyEncoder(ModelMixin, ConfigMixin):
321
- @register_to_config
322
- def __init__(self, load_pretrained=False,
323
- dino_config_dict=None, siglip_config_dict=None):
324
- super().__init__()
325
- if load_pretrained:
326
- image_encoder_dino = AutoModel.from_pretrained('facebook/dinov2-large', torch_dtype=th.float16)
327
- image_encoder_siglip = SiglipVisionModel.from_pretrained("google/siglip-large-patch16-256", torch_dtype=th.float16, attn_implementation="sdpa")
328
- else:
329
- image_encoder_dino = AutoModel.from_config(Dinov2Config.from_dict(dino_config_dict))
330
- image_encoder_siglip = AutoModel.from_config(SiglipVisionConfig.from_dict(siglip_config_dict))
331
-
332
- image_encoder_dino.requires_grad_(False)
333
- image_encoder_dino = image_encoder_dino.to(memory_format=th.channels_last)
334
-
335
- image_encoder_siglip.requires_grad_(False)
336
- image_encoder_siglip = image_encoder_siglip.to(memory_format=th.channels_last)
337
- self.image_encoder_dino = image_encoder_dino
338
- self.image_encoder_siglip = image_encoder_siglip
339
-
340
-
341
- def dino_normalization(self, encoder_output):
342
- embeds = encoder_output.last_hidden_state
343
- embeds_pooled = embeds[:, 0:1]
344
- embeds = embeds / th.norm(embeds_pooled, dim=-1, keepdim=True)
345
- return embeds
346
-
347
- def siglip_normalization(self, encoder_output):
348
- embeds = th.cat ([encoder_output.pooler_output[:, None, :], encoder_output.last_hidden_state], dim=1)
349
- embeds_pooled = embeds[:, 0:1]
350
- embeds = embeds / th.norm(embeds_pooled, dim=-1, keepdim=True)
351
- return embeds
352
-
353
- def forward(self, dino_in, siglip_in):
354
-
355
- x_1 = self.image_encoder_dino(dino_in, output_hidden_states=True)
356
- x_1_first = x_1.hidden_states[0]
357
- x_1 = self.dino_normalization(x_1)
358
- x_2 = self.image_encoder_siglip(siglip_in, output_hidden_states=True)
359
- x_2_first = x_2.hidden_states[0]
360
- x_2_first_pool = th.mean(x_2_first, dim=1, keepdim=True)
361
- x_2_first = th.cat([x_2_first_pool, x_2_first], 1)
362
- x_2 = self.siglip_normalization(x_2)
363
- dino_embd = th.cat([x_1, x_1_first], -1)
364
- siglip_embd = th.cat([x_2, x_2_first], -1)
365
- return dino_embd, siglip_embd
366
-
367
 
368
  class PatternAnalogyTrifuser(DiffusionPipeline):
369
  r"""
 
33
 
34
  from diffusers.configuration_utils import ConfigMixin, register_to_config
35
  # REf: https://github.com/tatp22/multidim-positional-encoding/tree/master
36
+ from analogy_encoder import AnalogyEncoder
37
+ from analogy_projector import AnalogyProjector
38
+ from analogy_input_processor import AnalogyInputProcessor
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  class PatternAnalogyTrifuser(DiffusionPipeline):
41
  r"""