barbaroo commited on
Commit
ddceda1
·
verified ·
1 Parent(s): d0e14cf

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # barbaroo/nllb_200_600M_en_fo
2
+
3
+ ## Model Description
4
+
5
+ - **Model Architecture**: This model is based on the [NLLB 600M architecture](https://huggingface.co/facebook/nllb-200-distilled-600M) and weights.
6
+ - **Languages**: This checkpoint is fine-tuned to translate from **English** (`en`) to **Faroese** (`fo`).
7
+ - **Size**: ~600M parameters.
8
+ - **Finetuning Datasets**:
9
+ - [Sprotin_parallel](https://huggingface.co/datasets/barbaroo/Sprotin_parallel)
10
+ - [fo_en_synthetic](https://huggingface.co/datasets/barbaroo/fo_en_synthetic)
11
+ - **Training Regime**: Trained until convergence (about 2 epochs).
12
+ - **License**: Inherits the original licenses of the [NLLB 600M model](https://huggingface.co/facebook/nllb-200-distilled-600M).
13
+
14
+ ## Intended Use
15
+
16
+ - **Primary Use Case**: Translate text from English to Faroese.
17
+ - **Audience**: Researchers, developers, or anyone interested in Faroese language processing.
18
+ - **Usage Scenarios**:
19
+ - Building Faroese-English translation tools
20
+ - Language research and corpus analysis
21
+ - Synthetic data creation
22
+
23
+ > **Important**: While the model can produce fluent translations, it is not guaranteed to be perfectly accurate on all inputs. Users should verify critical or sensitive content through human experts.
24
+
25
+ ## How to Use
26
+
27
+ Below is a simple usage example in Python with [Hugging Face Transformers](https://github.com/huggingface/transformers):
28
+
29
+ ```python
30
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
31
+
32
+ model_name = "barbaroo/nllb_200_600M_en_fo"
33
+ translator = pipeline("translation", model=model_name, tokenizer=model_name)
34
+
35
+ text = "Hello, how are you?"
36
+ translation = translator(text)
37
+ print(translation)