|
import torch, fire |
|
from typing import Optional |
|
import torch.distributed |
|
from torch.nn import functional as F |
|
from flash_attn import flash_attn_varlen_func |
|
from torch import nn |
|
import numpy as np |
|
import deepspeed |
|
from transformers.activations import ACT2FN |
|
from dataclasses import dataclass |
|
from transformers.modeling_outputs import ModelOutput |
|
try: |
|
from .vector_quantize import VectorQuantize |
|
except: |
|
from vector_quantize import VectorQuantize |
|
|
|
from .flow_matching import ( |
|
ConditionalDecoder, |
|
ConditionalCFM, |
|
) |
|
|
|
import math |
|
import copy |
|
|
|
def sinusoids(length, channels, max_timescale=10000): |
|
"""Returns sinusoids for positional embedding""" |
|
assert channels % 2 == 0 |
|
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1) |
|
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2)) |
|
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :] |
|
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) |
|
|
|
def get_sequence_mask(inputs, inputs_length): |
|
if inputs.dim() == 3: |
|
bsz, tgt_len, _ = inputs.size() |
|
else: |
|
bsz, tgt_len = inputs_length.shape[0], torch.max(inputs_length) |
|
sequence_mask = torch.arange(0, tgt_len).to(inputs.device) |
|
sequence_mask = torch.lt(sequence_mask, inputs_length.reshape(bsz, 1)).view(bsz, tgt_len, 1) |
|
unpacking_index = torch.cumsum(sequence_mask.to(torch.int64).view(-1), dim=0) - 1 |
|
return sequence_mask, unpacking_index |
|
|
|
def unpack_hidden_states(hidden_states, lengths): |
|
bsz = lengths.shape[0] |
|
sequence_mask, unpacking_index = get_sequence_mask(hidden_states, lengths) |
|
hidden_states = torch.index_select(hidden_states, 0, unpacking_index).view( |
|
bsz, torch.max(lengths), hidden_states.shape[-1] |
|
) |
|
hidden_states = torch.where( |
|
sequence_mask, hidden_states, 0 |
|
) |
|
return hidden_states |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]: |
|
hidden_states = hidden_states.to(self.weight.dtype) |
|
|
|
return self.weight * hidden_states |
|
|
|
|
|
class OmniWhisperAttention(nn.Module): |
|
def __init__(self, embed_dim, num_heads, causal=False): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.head_dim = embed_dim // num_heads |
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True) |
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True) |
|
|
|
self.causal = causal |
|
|
|
def forward(self, hidden_states: torch.Tensor, seq_len: torch.Tensor): |
|
bsz, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states).view(bsz, self.num_heads, self.head_dim) |
|
key_states = self.k_proj(hidden_states).view(bsz, self.num_heads, self.head_dim) |
|
value_states = self.v_proj(hidden_states).view(bsz, self.num_heads, self.head_dim) |
|
|
|
cu_len = F.pad(torch.cumsum(seq_len, dim=0), (1, 0), "constant", 0).to(torch.int32) |
|
max_seqlen = torch.max(seq_len).to(torch.int32).detach() |
|
attn_output = flash_attn_varlen_func(query_states, key_states, value_states, cu_len, cu_len, max_seqlen, |
|
max_seqlen, causal=self.causal) |
|
attn_output = attn_output.reshape(bsz, self.embed_dim) |
|
attn_output = self.out_proj(attn_output) |
|
return attn_output |
|
|
|
|
|
class OmniWhisperTransformerLayer(nn.Module): |
|
def __init__( |
|
self, |
|
act, |
|
d_model, |
|
encoder_attention_heads, |
|
encoder_ffn_dim, |
|
causal, |
|
ln_type="LayerNorm", |
|
): |
|
super().__init__() |
|
self.embed_dim = d_model |
|
self.self_attn = OmniWhisperAttention( |
|
self.embed_dim, encoder_attention_heads, causal |
|
) |
|
|
|
if ln_type == "LayerNorm": |
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) |
|
elif ln_type == "RMSNorm": |
|
self.self_attn_layer_norm = RMSNorm(self.embed_dim) |
|
else: |
|
raise ValueError(f"Unknown ln_type: {ln_type}") |
|
|
|
self.activation_fn = act |
|
self.fc1 = nn.Linear(self.embed_dim, encoder_ffn_dim) |
|
self.fc2 = nn.Linear(encoder_ffn_dim, self.embed_dim) |
|
|
|
if ln_type == "LayerNorm": |
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim) |
|
elif ln_type == "RMSNorm": |
|
self.final_layer_norm = RMSNorm(self.embed_dim) |
|
else: |
|
raise ValueError(f"Unknown ln_type: {ln_type}") |
|
|
|
def forward( |
|
self, hidden_states: torch.Tensor, seq_len: torch.Tensor |
|
) -> torch.Tensor: |
|
residual = hidden_states |
|
hidden_states = self.self_attn_layer_norm(hidden_states) |
|
hidden_states = self.self_attn(hidden_states, seq_len) |
|
hidden_states = residual + hidden_states |
|
residual = hidden_states |
|
hidden_states = self.final_layer_norm(hidden_states) |
|
hidden_states = self.activation_fn(self.fc1(hidden_states)) |
|
hidden_states = self.fc2(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
if ( |
|
hidden_states.dtype == torch.float16 |
|
or hidden_states.dtype == torch.bfloat16 |
|
) and (torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()): |
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 |
|
hidden_states = torch.clamp( |
|
hidden_states, min=-clamp_value, max=clamp_value |
|
) |
|
return hidden_states |
|
|
|
|
|
class OmniAudioEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
config._attn_implementation = 'flash_attention_2' |
|
self.config = config |
|
self.max_source_positions = (config.max_audio_seconds * config.sampling_rate // config.hop_length) // config.stride_size |
|
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 |
|
|
|
self.conv1 = nn.Conv1d(config.num_mel_bins, config.d_model, kernel_size=config.kernel_size, padding=1) |
|
self.conv2 = nn.Conv1d(config.d_model, config.d_model, kernel_size=config.kernel_size, |
|
stride=config.stride_size, padding=1) |
|
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, config.d_model)) |
|
|
|
self.layers = nn.ModuleList([OmniWhisperTransformerLayer( |
|
ACT2FN[config.activation_function], |
|
config.d_model, |
|
config.encoder_attention_heads, |
|
config.encoder_ffn_dim, |
|
False) for _ in range(config.encoder_layers)]) |
|
self.layer_norm = nn.LayerNorm(config.d_model) |
|
|
|
@torch.no_grad() |
|
def fake_input(self, device): |
|
input_features = torch.rand([2, self.config.num_mel_bins, 10], dtype=torch.float32, device=device) |
|
encoder_length = torch.ones([2], dtype=torch.int32, device=device) * 3 |
|
bridge_length = torch.ones([2], dtype=torch.int32, device=device) |
|
return input_features, encoder_length, bridge_length |
|
|
|
def forward( |
|
self, |
|
input_features, |
|
output_length, |
|
): |
|
input_features = input_features.to(self.conv1.weight.dtype) |
|
inputs_embeds = nn.functional.gelu(self.conv1(input_features)) |
|
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) |
|
inputs_embeds = inputs_embeds.permute(0, 2, 1) |
|
bsz, tgt_len, _ = inputs_embeds.size() |
|
if tgt_len < self.positional_embedding.shape[0]: |
|
current_positional_embedding = self.positional_embedding[:tgt_len] |
|
else: |
|
current_positional_embedding = self.positional_embedding |
|
hidden_states = (inputs_embeds.to(torch.float32) + current_positional_embedding).to(inputs_embeds.dtype) |
|
|
|
|
|
attention_mask, unpacking_index = get_sequence_mask(hidden_states, output_length) |
|
hidden_states = torch.masked_select(hidden_states, attention_mask).view(torch.sum(output_length), |
|
self.config.d_model) |
|
|
|
for idx, encoder_layer in enumerate(self.layers): |
|
hidden_states = encoder_layer(hidden_states, output_length) |
|
hidden_states = self.layer_norm(hidden_states) |
|
|
|
hidden_states = torch.index_select(hidden_states, 0, unpacking_index).view(bsz, tgt_len, self.config.d_model) |
|
hidden_states = torch.where(attention_mask, hidden_states, 0) |
|
return hidden_states |
|
|
|
|
|
class CasualConvTranspose1d(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size, stride): |
|
super().__init__() |
|
self.conv = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride) |
|
self.norm = nn.GroupNorm(1, out_channels) |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
|
|
def forward(self, hidden_states, input_length, output_dim=None): |
|
kernel_size = self.conv.kernel_size[0] |
|
stride = self.conv.stride[0] |
|
bsz = input_length.shape[0] |
|
|
|
if output_dim is None: |
|
output_dim = hidden_states.dim() |
|
if hidden_states.dim() <= 2: |
|
sequence_mask, unpacking_index = get_sequence_mask(hidden_states, input_length) |
|
hidden_states = torch.index_select(hidden_states, 0, unpacking_index).view(bsz, torch.max(input_length), |
|
self.in_channels) |
|
hidden_states = torch.where(sequence_mask, hidden_states, 0) |
|
|
|
hidden_states = hidden_states.transpose(2, 1) |
|
hidden_states = self.conv(hidden_states) |
|
hidden_states = self.norm(hidden_states) |
|
hidden_states = hidden_states.transpose(2, 1) |
|
|
|
casual_padding_right = max(0, kernel_size - stride) |
|
hidden_states = hidden_states[:, :hidden_states.shape[1] - casual_padding_right, |
|
:] |
|
output_length = (input_length - 1) * stride + kernel_size - casual_padding_right |
|
sequence_mask, _ = get_sequence_mask(hidden_states, output_length) |
|
if output_dim <= 2: |
|
hidden_states = torch.masked_select(hidden_states, sequence_mask).view(-1, self.out_channels) |
|
else: |
|
hidden_states = torch.where(sequence_mask, hidden_states, 0) |
|
hidden_states = hidden_states[:, :torch.max(output_length), :] |
|
return hidden_states, output_length |
|
|
|
|
|
class MelSpecRefineNet(nn.Module): |
|
""" |
|
# post net, coarse to refined mel-spectrogram frames |
|
# ref1: Autoregressive Speech Synthesis without Vector Quantization |
|
# ref2: CosyVoice length_regulator.py |
|
# ref3: Neural Speech Synthesis with Transformer Network https://github.com/soobinseo/Transformer-TTS/blob/master/network.py |
|
""" |
|
|
|
def __init__(self, encoder_config, vocoder_config): |
|
super().__init__() |
|
self.encoder_config = encoder_config |
|
self.vocoder_config = vocoder_config |
|
|
|
layers = nn.ModuleList([]) |
|
in_channels = self.vocoder_config.num_mel_bins |
|
for i, out_channels in enumerate(self.vocoder_config.channels[:-1]): |
|
module = nn.Conv1d(in_channels, out_channels, 5, 1, 2) |
|
in_channels = out_channels |
|
norm = nn.GroupNorm(1, out_channels) |
|
act = nn.Mish() |
|
layers.extend([module, norm, act]) |
|
layers.append(nn.Conv1d(in_channels, self.vocoder_config.num_mel_bins, 1, 1)) |
|
self.layers = nn.Sequential(*layers) |
|
|
|
def compute_output_length(self, input_length): |
|
output_length = input_length.to( |
|
torch.float32) * self.encoder_config.hop_length / self.encoder_config.sampling_rate |
|
output_length = output_length * self.vocoder_config.sampling_rate / self.vocoder_config.hop_length |
|
return output_length.to(torch.int64) |
|
|
|
def forward(self, coarse_mel, input_length, output_length=None): |
|
bsz, _, d = coarse_mel.shape |
|
assert (d == self.vocoder_config.num_mel_bins) |
|
if output_length is None or not self.training: |
|
output_length = self.compute_output_length(input_length) |
|
coarse_mel, default_dtype = coarse_mel[:, :torch.max(input_length), :], coarse_mel.dtype |
|
coarse_mel = F.interpolate(coarse_mel.to(torch.float32).transpose(1, 2).contiguous(), size=output_length.max(), |
|
mode='nearest').to(default_dtype) |
|
refined_mel = self.layers(coarse_mel).transpose(1, 2).contiguous() |
|
coarse_mel = coarse_mel.transpose(1, 2) |
|
refined_mel += coarse_mel |
|
sequence_mask, _ = get_sequence_mask(refined_mel, output_length) |
|
coarse_mel = torch.where(sequence_mask, coarse_mel, 0) |
|
refined_mel = torch.where(sequence_mask, refined_mel, 0) |
|
return refined_mel, coarse_mel, output_length |
|
|
|
|
|
@dataclass |
|
class OmniAudioDecoderOutput(ModelOutput): |
|
refined_mel: Optional[torch.FloatTensor] = None |
|
coarse_mel: Optional[torch.FloatTensor] = None |
|
mel_length: Optional[torch.Tensor] = None |
|
hidden_states_before_dconv2: Optional[torch.FloatTensor] = None |
|
output_length_before_dconv2: Optional[torch.Tensor] = None |
|
|
|
|
|
class OmniAudioDecoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config.audio_config |
|
self.vocoder_config = config.vocoder_config |
|
self.max_source_positions = self.config.max_audio_seconds * self.config.sampling_rate // self.config.hop_length |
|
|
|
self.dconv1 = CasualConvTranspose1d( |
|
self.config.d_model, |
|
self.config.d_model, |
|
self.config.decoder_kernel_size, |
|
self.config.avg_pooler, |
|
) |
|
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, self.config.d_model)) |
|
|
|
self.layers = nn.ModuleList( |
|
[OmniWhisperTransformerLayer( |
|
ACT2FN[self.config.activation_function], |
|
self.config.d_model, |
|
self.config.decoder_attention_heads, |
|
self.config.decoder_ffn_dim, |
|
True |
|
) for _ in range(self.config.decoder_layers) |
|
]) |
|
self.layer_norm = nn.LayerNorm(self.config.d_model) |
|
self.dconv2 = CasualConvTranspose1d( |
|
self.config.d_model, |
|
self.vocoder_config.num_mel_bins, |
|
self.config.decoder_kernel_size, |
|
self.config.decoder_stride_size |
|
) |
|
self.post_net = MelSpecRefineNet(config.audio_config, config.vocoder_config) |
|
self.gradient_checkpointing = True |
|
|
|
@torch.no_grad() |
|
def fake_input(self, device): |
|
audio_embed = torch.rand([1, 10, self.config.d_model], dtype=torch.float32, device=device) |
|
input_length = torch.ones([1], dtype=torch.int32, device=device) * 10 |
|
mel_labels_length = self.post_net.compute_output_length(input_length) |
|
return audio_embed, input_length, None, mel_labels_length |
|
|
|
def forward(self, |
|
audio_embed, |
|
input_length, |
|
mel_labels=None, |
|
mel_labels_length=None, |
|
fake_input=False, |
|
): |
|
if fake_input: |
|
audio_embed, input_length, mel_labels, mel_labels_length = self.fake_input(self.layer_norm.weight.device) |
|
|
|
assert (audio_embed.shape[-1] == self.config.d_model) |
|
audio_embed = audio_embed.to(self.layer_norm.weight) |
|
audio_embed, output_length = self.dconv1(audio_embed, input_length, output_dim=3) |
|
_, tgt_len, _ = audio_embed.size() |
|
if tgt_len < self.positional_embedding.shape[0]: |
|
current_positional_embedding = self.positional_embedding[:tgt_len] |
|
else: |
|
current_positional_embedding = self.positional_embedding |
|
hidden_states = (audio_embed.to(torch.float32) + current_positional_embedding).to(audio_embed.dtype) |
|
|
|
|
|
attention_mask, _ = get_sequence_mask(hidden_states, output_length) |
|
hidden_states = torch.masked_select(hidden_states, attention_mask).view(torch.sum(output_length), self.config.d_model) |
|
|
|
for idx, encoder_layer in enumerate(self.layers): |
|
hidden_states = encoder_layer(hidden_states, output_length) |
|
|
|
hidden_states = self.layer_norm(hidden_states) |
|
hidden_states_before_dconv2 = hidden_states |
|
output_length_before_dconv2 = output_length |
|
|
|
coarse_mel, output_length = self.dconv2(hidden_states, output_length, output_dim=3) |
|
refined_mel, coarse_mel, mel_labels_length = self.post_net(coarse_mel, output_length, mel_labels_length) |
|
|
|
return OmniAudioDecoderOutput( |
|
refined_mel=refined_mel, |
|
coarse_mel=coarse_mel, |
|
mel_length=mel_labels_length, |
|
hidden_states_before_dconv2=hidden_states_before_dconv2, |
|
output_length_before_dconv2=output_length_before_dconv2, |
|
) |
|
|
|
|
|
class OmniAudioVQBridgeTokenizer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config.audio_config |
|
self.gradient_checkpointing = False |
|
self.intermediate_dim = self.config.d_model * self.config.avg_pooler |
|
self.gate_proj = nn.Conv1d(self.config.d_model, self.intermediate_dim, self.config.avg_pooler, self.config.avg_pooler, bias=False) |
|
self.up_proj = nn.Conv1d(self.config.d_model, self.intermediate_dim, self.config.avg_pooler, self.config.avg_pooler, bias=False) |
|
|
|
self.down_proj = nn.Linear(self.intermediate_dim, self.intermediate_dim, bias=False) |
|
self.act_fn = ACT2FN['silu'] |
|
self.layer_norm = nn.LayerNorm(self.intermediate_dim) |
|
self.proj_decoder = nn.Linear(self.intermediate_dim, self.config.d_model) |
|
|
|
self.vq_list = nn.ModuleList([]) |
|
for idx, codebook_size in enumerate(self.config.vq_config.codebook_sizes): |
|
vq_config = copy.deepcopy(self.config.vq_config) |
|
vq_config.dim = self.intermediate_dim |
|
vq_config.codebook_size = codebook_size |
|
self.vq_list.append(VectorQuantize(vq_config)) |
|
for vq_layer in self.vq_list: |
|
deepspeed.zero.register_external_parameter(self, vq_layer.codebook.embed) |
|
|
|
def rvq_op(self, inputs, output_length): |
|
def rvq_layer_op(vq_layer, residual_encoding, output_length): |
|
q_v_i, code_ids_i = vq_layer(residual_encoding, output_length) |
|
residual_encoding = residual_encoding.float() - q_v_i.float() |
|
residual_encoding = residual_encoding.to(inputs.dtype) |
|
return residual_encoding, code_ids_i |
|
|
|
cmt_loss, residual_encoding = 0, inputs |
|
code_ids_list = [] |
|
for i, vq_layer in enumerate(self.vq_list): |
|
residual_encoding, code_ids_i = rvq_layer_op(vq_layer, residual_encoding, output_length) |
|
code_ids_list.append(code_ids_i) |
|
return torch.stack(code_ids_list, -1) |
|
|
|
def forward(self, x, output_length): |
|
batch_size, _, _ = x.shape |
|
output_length = output_length.to(x.device) |
|
|
|
if x.shape[1] % self.config.avg_pooler != 0: |
|
x = F.pad(x, (0, 0, 0, self.config.avg_pooler - x.shape[1] % self.config.avg_pooler), "constant", 0) |
|
xt = x.permute(0, 2, 1) |
|
g = self.gate_proj(xt).permute(0, 2, 1) |
|
u = self.up_proj(xt).permute(0, 2, 1) |
|
x = x.reshape(batch_size, -1, self.intermediate_dim) |
|
|
|
c = self.down_proj(self.act_fn(g) * u) |
|
res = self.layer_norm(c + x) |
|
valid_mask, _ = get_sequence_mask(res, output_length) |
|
code_ids = self.rvq_op(res, output_length) |
|
code_ids = torch.masked_select(code_ids, valid_mask).reshape(-1, len(self.vq_list)) |
|
return code_ids |
|
|
|
@torch.no_grad() |
|
def decode(self, code_ids): |
|
vq_num = code_ids.shape[-1] |
|
res = sum(self.vq_list[i].get_output_from_indices(code_ids[:, i]).float() for i in range(vq_num-1,-1,-1)).to(self.proj_decoder.weight) |
|
decoder_emb = self.proj_decoder(res.to(self.proj_decoder.weight)) |
|
return decoder_emb |
|
|
|
@torch.no_grad() |
|
def recover(self, code_ids): |
|
vq_num = code_ids.shape[-1] |
|
res = sum(self.vq_list[i].get_output_from_indices(code_ids[:, i]).float() for i in range(vq_num-1,-1,-1)).to(self.proj_decoder.weight) |
|
return res |
|
|
|
|
|
class FlowmatchingPrenet(nn.Module): |
|
def __init__( |
|
self, |
|
input_feat_dim, |
|
out_feat_dim, |
|
d_model, |
|
attention_heads, |
|
ffn_dim, |
|
nlayers, |
|
activation_function, |
|
max_source_positions, |
|
target_mel_length_scale_ratio, |
|
): |
|
super().__init__() |
|
|
|
self.d_model = d_model |
|
self.target_mel_length_scale_ratio = target_mel_length_scale_ratio |
|
self.gradient_checkpointing = False |
|
|
|
self.register_buffer( |
|
"positional_embedding", sinusoids(max_source_positions, d_model) |
|
) |
|
|
|
self.in_mlp = nn.Sequential( |
|
nn.Linear(input_feat_dim, d_model * 4), |
|
nn.SiLU(), |
|
nn.Linear(d_model * 4, d_model), |
|
) |
|
|
|
self.transformer_layers = nn.ModuleList( |
|
[ |
|
OmniWhisperTransformerLayer( |
|
act=ACT2FN[activation_function], |
|
d_model=d_model, |
|
encoder_attention_heads=attention_heads, |
|
encoder_ffn_dim=ffn_dim, |
|
causal=True, |
|
ln_type="RMSNorm", |
|
) |
|
for _ in range(nlayers) |
|
] |
|
) |
|
|
|
self.final_norm = RMSNorm(self.d_model) |
|
self.out_proj = nn.Linear(d_model, out_feat_dim, bias=False) |
|
|
|
def compute_output_length(self, input_length): |
|
output_length = input_length.float() * self.target_mel_length_scale_ratio |
|
return output_length.to(torch.int64) |
|
|
|
def forward(self, input_feat, input_length, output_length=None): |
|
""" |
|
Args: |
|
input_feat: [B, T, input_feat_dim] |
|
input_length: [B] |
|
output_length: [B] |
|
|
|
""" |
|
if output_length is None or not self.training: |
|
output_length = self.compute_output_length(input_length) |
|
|
|
input_feat = input_feat[:, : input_length.max(), :] |
|
orig_dtype = input_feat.dtype |
|
|
|
input_feat = F.interpolate( |
|
input=input_feat.to(torch.float32).transpose(1, 2).contiguous(), |
|
size=output_length.max(), |
|
mode="nearest", |
|
).to(orig_dtype) |
|
input_feat = input_feat.transpose(1, 2).contiguous() |
|
hidden_states = self.in_mlp(input_feat) |
|
|
|
|
|
bsz, tgt_len, d_model = hidden_states.shape |
|
attention_mask, unpacking_index = get_sequence_mask( |
|
hidden_states, output_length |
|
) |
|
hidden_states = torch.masked_select(hidden_states, attention_mask).view( |
|
torch.sum(output_length), self.d_model |
|
) |
|
|
|
for idx, encoder_layer in enumerate(self.transformer_layers): |
|
hidden_states = encoder_layer(hidden_states, output_length) |
|
|
|
|
|
hidden_states = torch.index_select(hidden_states, 0, unpacking_index).view( |
|
bsz, tgt_len, d_model |
|
) |
|
hidden_states = torch.where(attention_mask, hidden_states, 0) |
|
|
|
hidden_states = self.final_norm(hidden_states) |
|
output = self.out_proj(hidden_states) |
|
return output, output_length |
|
|
|
|
|
@dataclass |
|
class OmniAudioFlowMatchingDecoderOutput(ModelOutput): |
|
flow_matching_mel: Optional[torch.FloatTensor] = None |
|
flow_matching_mel_lengths: Optional[torch.FloatTensor] = None |
|
|
|
|
|
class OmniAudioFlowMatchingDecoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config.flow_matching_config |
|
self.in_channels = self.config.in_channels |
|
self.spk_emb_dim = self.config.spk_emb_dim |
|
self.diffusion_steps = self.config.diffusion_steps |
|
self.cal_mel_mae = self.config.cal_mel_mae |
|
self.forward_step = -1 |
|
|
|
self.prenet = FlowmatchingPrenet( |
|
input_feat_dim=self.config.prenet_in_dim, |
|
out_feat_dim=self.config.prenet_out_dim, |
|
d_model=self.config.prenet_d_model, |
|
attention_heads=self.config.prenet_attention_heads, |
|
ffn_dim=self.config.prenet_ffn_dim, |
|
nlayers=self.config.prenet_nlayers, |
|
activation_function=self.config.prenet_activation_function, |
|
max_source_positions=self.config.prenet_max_source_positions, |
|
target_mel_length_scale_ratio=self.config.prenet_target_mel_length_scale_ratio, |
|
) |
|
|
|
self.conditional_decoder = ConditionalDecoder( |
|
in_channels=self.in_channels * 2 + self.spk_emb_dim, |
|
out_channels=self.in_channels, |
|
causal=True, |
|
channels=self.config.channels, |
|
dropout=self.config.dropout, |
|
attention_head_dim=self.config.attention_head_dim, |
|
n_blocks=self.config.n_blocks, |
|
num_mid_blocks=self.config.num_mid_blocks, |
|
num_heads=self.config.num_heads, |
|
act_fn=self.config.act_fn, |
|
) |
|
|
|
self.cfm = ConditionalCFM( |
|
in_channels=self.in_channels, |
|
cfm_params=self.config.cfm_params, |
|
n_spks=0, |
|
spk_emb_dim=self.spk_emb_dim, |
|
) |
|
|
|
|
|
def unpack_hidden_states(self, hidden_states, output_length): |
|
unpacked = unpack_hidden_states(hidden_states, output_length) |
|
return unpacked, output_length |
|
|
|
def forward( |
|
self, refined_mel, input_length, mel_labels=None, mel_labels_length=None |
|
): |
|
""" |
|
:param refined_mel: [bs, max_input_len, mel_bin] |
|
:param input_length: [batch_size] |
|
:param refined_mel: [bs, mel_bin, max_input_len] |
|
:return: |
|
""" |
|
self.forward_step += 1 |
|
|
|
orig_dtype = refined_mel.dtype |
|
prenet_mae_metric = torch.tensor(0.0).to(refined_mel.device) |
|
prenet_regression_loss = torch.tensor(0.0).to(refined_mel.device) |
|
|
|
if self.prenet is not None: |
|
refined_mel = refined_mel[:, : torch.max(input_length), :] |
|
if mel_labels_length is None: |
|
mel_labels_length = self.prenet.compute_output_length(input_length) |
|
refined_mel, input_length = self.prenet( |
|
refined_mel, input_length, mel_labels_length |
|
) |
|
|
|
float_dtype = refined_mel.dtype |
|
refined_mel = refined_mel.float() |
|
input_length = input_length.long() |
|
|
|
refined_mel = refined_mel[:, : torch.max(input_length), :] |
|
sequence_mask, unpacking_index = get_sequence_mask(refined_mel, input_length) |
|
refined_mel = refined_mel.transpose(1, 2) |
|
sequence_mask = sequence_mask.transpose(2, 1) |
|
|
|
fm_mel = self.cfm.forward( |
|
estimator=self.conditional_decoder, |
|
mu=refined_mel.to(float_dtype), |
|
mask=sequence_mask.float(), |
|
n_timesteps=self.diffusion_steps, |
|
) |
|
return OmniAudioFlowMatchingDecoderOutput( |
|
flow_matching_mel=fm_mel.transpose(1, 2), |
|
flow_matching_mel_lengths=mel_labels_length, |
|
) |
|
|