|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch omni model.""" |
|
import os |
|
import time |
|
import json |
|
import math |
|
import numpy as np |
|
from typing import List, Optional, Tuple, Union, Any |
|
from threading import Thread |
|
from easydict import EasyDict |
|
|
|
import torch |
|
import torch.distributed |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from torch.nn import functional as F |
|
import torch.distributed as dist |
|
from transformers import PreTrainedModel |
|
from transformers.activations import ACT2FN |
|
from dataclasses import dataclass |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput |
|
from transformers.generation.utils import GenerationConfig |
|
from transformers.utils import logging |
|
|
|
from .vector_quantize import VectorQuantize, EuclideanCodebook |
|
from .matcha_components import ( |
|
SinusoidalPosEmb, |
|
Block1D, |
|
ResnetBlock1D, |
|
Downsample1D, |
|
TimestepEmbedding, |
|
Upsample1D, |
|
) |
|
from .matcha_transformer import BasicTransformerBlock |
|
from .flow_matching import ConditionalDecoder, ConditionalCFM |
|
|
|
from .configuration_omni import OmniConfig |
|
from .audio_modeling_omni import (RMSNorm, |
|
OmniAudioEncoder, |
|
OmniAudioDecoder, |
|
OmniAudioVQBridgeTokenizer, |
|
OmniAudioFlowMatchingDecoder) |
|
from .visual_modeling_omni import OmniVisualEncoder, OmniVisualBridge |
|
from .processor_omni import OmniMMProcessor |
|
|
|
|
|
try: |
|
|
|
from .generation_utils import build_chat_input, TextIterStreamer |
|
from .sequence_parallel_utils import ( |
|
create_attention_layer, |
|
get_sequence_parallel_size, |
|
get_sequence_parallel_chunk, |
|
) |
|
except ModuleNotFoundError: |
|
|
|
try: |
|
import sys |
|
sys.path.append(os.path.dirname(__file__)) |
|
from generation_utils import build_chat_input, TextIterStreamer |
|
from sequence_parallel_utils import ( |
|
create_attention_layer, |
|
get_sequence_parallel_size, |
|
get_sequence_parallel_chunk, |
|
) |
|
except Exception: |
|
raise |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
def get_slopes(n): |
|
def get_slopes_power_of_2(n): |
|
start = (2 ** (-2 ** -(math.log2(n) - 3))) |
|
ratio = start |
|
return [start * ratio ** i for i in range(n)] |
|
|
|
if math.log2(n).is_integer(): |
|
return get_slopes_power_of_2( |
|
n) |
|
else: |
|
closest_power_of_2 = 2 ** math.floor( |
|
math.log2(n)) |
|
return get_slopes_power_of_2(closest_power_of_2) + get_slopes(2 * closest_power_of_2)[0::2][ |
|
:n - closest_power_of_2] |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=5e6, device=None): |
|
super().__init__() |
|
|
|
|
|
try: |
|
import deepspeed |
|
self.arange = deepspeed.runtime.zero.partition_parameters._orig_torch_arange |
|
except: |
|
self.arange = torch.arange |
|
|
|
self.inv_freq = 1.0 / (base ** (self.arange(0, dim, 2).float().to(device) / dim)) |
|
self.max_seq_len_cached = max_position_embeddings |
|
t = self.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32) |
|
freqs = torch.outer(t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32) |
|
self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self.max_seq_len_cached = seq_len |
|
t = self.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32) |
|
freqs = torch.outer(t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32).to(x.device) |
|
self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32).to(x.device) |
|
return ( |
|
self.cos_cached[:, :, :seq_len, ...].to(torch.float32).to(x.device), |
|
self.sin_cached[:, :, :seq_len, ...].to(torch.float32).to(x.device), |
|
) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos_, sin_, position_ids): |
|
cos = cos_.squeeze(1).squeeze(0) |
|
sin = sin_.squeeze(1).squeeze(0) |
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin) |
|
k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin) |
|
return q_embed.to(q.dtype), k_embed.to(k.dtype) |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
hidden_act: str, |
|
): |
|
super().__init__() |
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) |
|
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class Attention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
def __init__(self, config: OmniConfig, is_sparse=False): |
|
super().__init__() |
|
self.config = config |
|
self.position_embedding_type = config.position_embedding_type.lower() |
|
self.num_kv_heads = config.num_key_value_heads |
|
self.head_dim = config.head_dim |
|
self.hidden_size = config.num_attention_heads * self.head_dim |
|
self.hidden_kv_size = self.num_kv_heads * self.head_dim |
|
|
|
if is_sparse: |
|
self.num_heads = config.sparse_attention_heads |
|
assert self.num_kv_heads == config.num_attention_heads |
|
self.W_pack = nn.Linear(self.hidden_size, 3 * self.num_heads * self.head_dim, bias=config.attention_qkv_bias) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
else: |
|
self.num_heads = config.num_attention_heads |
|
if self.config.attention_qkv_pack: |
|
self.W_pack = nn.Linear(config.hidden_size, self.hidden_size + self.hidden_kv_size * 2, bias=config.attention_qkv_bias) |
|
else: |
|
self.q_proj = nn.Linear(config.hidden_size, self.hidden_size, bias=config.attention_qkv_bias) |
|
self.k_proj = nn.Linear(config.hidden_size, self.hidden_kv_size, bias=config.attention_qkv_bias) |
|
self.v_proj = nn.Linear(config.hidden_size, self.hidden_kv_size, bias=config.attention_qkv_bias) |
|
|
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False) |
|
|
|
if self.position_embedding_type == 'rope': |
|
self.rotary_emb = RotaryEmbedding( |
|
dim=self.head_dim, |
|
max_position_embeddings=config.max_position_embeddings, |
|
base=config.get_rotary_base() |
|
) |
|
elif self.position_embedding_type == 'alibi': |
|
self.alibi_slopes = get_slopes(self.num_heads) |
|
self.attention = create_attention_layer(self.hidden_size, self.num_heads, self.head_dim) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def _repeat_kv(self, hidden_states: torch.Tensor, num_heads: int) -> torch.Tensor: |
|
assert hidden_states.size(1) <= num_heads and num_heads % hidden_states.size(1) == 0 |
|
return repeat_kv(hidden_states, num_heads // hidden_states.size(1)) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
seqlens: Optional[torch.IntTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len = hidden_states.shape[:2] |
|
|
|
if self.config.attention_qkv_pack: |
|
proj = self.W_pack(hidden_states) |
|
query_states, key_states, value_states = proj.split([self.hidden_size, self.hidden_kv_size, self.hidden_kv_size], dim=-1) |
|
else: |
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
|
|
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
if self.position_embedding_type == 'rope': |
|
max_position = position_ids.max().item()+1 if position_ids is not None else kv_seq_len * get_sequence_parallel_size() |
|
cos, sin = self.rotary_emb(value_states, seq_len=max_position) |
|
query_states, key_states = apply_rotary_pos_emb( |
|
query_states, key_states, cos, sin, |
|
get_sequence_parallel_chunk(position_ids) |
|
) |
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
|
|
key_states = self._repeat_kv(key_states, query_states.size(1)) |
|
value_states = self._repeat_kv(value_states, query_states.size(1)) |
|
|
|
if seqlens is not None: |
|
seqlens = seqlens.to(dtype=torch.int32) |
|
max_seqlen = (seqlens[1:] - seqlens[:-1]).max().item() |
|
if self.position_embedding_type == 'alibi': |
|
alibi_slopes = torch.tensor(self.alibi_slopes, dtype=torch.float32).to(query_states.device) |
|
else: |
|
alibi_slopes = None |
|
attn_output = self.attention( |
|
query_states, key_states, value_states, seqlens, seqlens, |
|
max_seqlen, max_seqlen, causal=True, alibi_slopes=alibi_slopes, use_flash=True) |
|
else: |
|
attn_output = self.attention( |
|
query_states, key_states, value_states, attn_mask=attention_mask, use_flash=False) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, -1) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
def __init__(self, config: OmniConfig, is_sparse=False): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = Attention(config=config, is_sparse=is_sparse) |
|
self.mlp = MLP( |
|
hidden_size=self.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
) |
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
seqlens: Optional[torch.IntTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
group_index=None, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
seqlens=seqlens, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class OmniPreTrainedModel(PreTrainedModel): |
|
config_class = OmniConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["DecoderLayer"] |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv1d) or isinstance(module, nn.ConvTranspose1d): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm) or isinstance(module, nn.GroupNorm): |
|
module.weight.data.fill_(1.0) |
|
module.bias.data.zero_() |
|
elif isinstance(module, RMSNorm): |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, OmniModel): |
|
module.gradient_checkpointing = value |
|
|
|
@dataclass |
|
class OmniModelOutputWithPast(BaseModelOutputWithPast): |
|
audio_encoder_ret: Optional[Any] = None |
|
audio_decoder_ret: Optional[Any] = None |
|
|
|
class OmniModel(OmniPreTrainedModel): |
|
def __init__(self, config: OmniConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
if config.visual_config.enable: |
|
self.visual_model = OmniVisualEncoder(config.visual_config) |
|
self.visual_bridge_model = OmniVisualBridge(config.visual_config) |
|
if config.video_config.enable and not config.visual_config.enable: |
|
self.visual_model = OmniVisualEncoder(config.video_config) |
|
self.visual_bridge_model = OmniVisualBridge(config.video_config) |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList([ |
|
DecoderLayer(config, is_sparse=layer_idx in config.sparse_attention_layers) |
|
for layer_idx in range(config.num_hidden_layers) |
|
]) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.audio_embed_layers = nn.ModuleList([ |
|
nn.Embedding(codedim + 1, config.hidden_size) |
|
for i, codedim in enumerate(config.audio_config.vq_config.codebook_sizes) |
|
]) |
|
|
|
self.gradient_checkpointing = True |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@torch.no_grad() |
|
def get_multimodal_mask(self, input_ids, pad_token_id, special_token_list): |
|
''' |
|
获取任意模态的特殊mask,包含以下 |
|
1. pad mask 表示文本中图像/语音/视频模态提前留出的token位置 |
|
2. special token mask 特殊token 例如对理解模型<start> <end> 不需要next token prediction |
|
3. embedding mask / lm_head mask 标记出特殊token在embedding中的mask |
|
''' |
|
pad_mask = torch.eq(input_ids, pad_token_id) |
|
sp_mask = torch.zeros_like(input_ids, dtype=torch.bool) |
|
lm_head_mask = torch.zeros([self.config.vocab_size, 1], dtype=torch.bool) |
|
for sp_id in special_token_list: |
|
sp_mask = torch.logical_or(sp_mask, torch.eq(input_ids, sp_id)) |
|
lm_head_mask[sp_id, 0] = True |
|
return pad_mask, sp_mask, lm_head_mask |
|
|
|
def get_multimodal_embed( |
|
self, |
|
input_ids, |
|
text_embedding, |
|
multimodal_embed, |
|
pad_token_id, |
|
fake_input, |
|
group_index=None, |
|
): |
|
pad_mask, sp_mask, _ = self.get_multimodal_mask(input_ids, pad_token_id, self.config.multimodal_special_token_list) |
|
if not self.training: |
|
multimodal_embed = multimodal_embed.to(input_ids.device) |
|
if not fake_input: |
|
assert pad_mask.sum() == multimodal_embed.shape[0] |
|
else: |
|
assert pad_mask.sum() <= 0 |
|
|
|
|
|
input_ids = torch.where(pad_mask, torch.cumsum(pad_mask.view(-1).to(input_ids), dim=0).view(input_ids.shape)-1, input_ids) |
|
text_embedding = (1 - pad_mask.to(text_embedding)).unsqueeze(-1) * text_embedding |
|
multimodal_embedding = torch.embedding(multimodal_embed, input_ids * pad_mask) |
|
multimodal_embedding = pad_mask.to(multimodal_embedding).unsqueeze(-1) * multimodal_embedding |
|
final_embedding = multimodal_embedding.to(text_embedding) + text_embedding |
|
|
|
if group_index is None: |
|
group_index = pad_mask.to(torch.int32) |
|
else: |
|
current_index = torch.max(group_index) + 1 |
|
group_index += pad_mask.to(torch.int32) * current_index |
|
|
|
return final_embedding, group_index |
|
|
|
def get_visual_embed( |
|
self, |
|
input_ids, |
|
text_embedding, |
|
images = None, |
|
patch_nums = None, |
|
images_grid = None, |
|
videos = None, |
|
videos_patch_nums = None, |
|
videos_grid = None, |
|
group_index = None, |
|
): |
|
if images is None or len(images) <= 0: |
|
images, images_grid, patch_nums = self.visual_model.fake_input(input_ids.device) |
|
image_fake_input = True |
|
else: |
|
image_fake_input = False |
|
|
|
if videos is None or len(videos) <= 0 : |
|
videos, videos_grid, videos_patch_nums = self.visual_model.fake_input(input_ids.device) |
|
video_fake_input = True |
|
else: |
|
video_fake_input = False |
|
|
|
visual_input = images + videos |
|
visual_grid = images_grid + videos_grid |
|
|
|
visual_input = torch.cat(visual_input, dim=0) |
|
visual_grid = torch.tensor(np.array(visual_grid)) |
|
|
|
visual_embed = self.visual_model(visual_input, grid_thw=visual_grid) |
|
visual_embed = self.visual_bridge_model(visual_embed) |
|
|
|
assert sum(patch_nums) + sum(videos_patch_nums) == visual_embed.shape[0] |
|
images_embed = visual_embed[:sum(patch_nums)] |
|
videos_embed = visual_embed[sum(patch_nums):] |
|
|
|
final_embedding, group_index = self.get_multimodal_embed(input_ids, text_embedding, images_embed, self.config.visual_config.image_pad_token_id, image_fake_input, group_index=group_index) |
|
final_embedding, group_index = self.get_multimodal_embed(input_ids, final_embedding, videos_embed, self.config.video_config.video_place_token_id, video_fake_input, group_index=group_index) |
|
return final_embedding, group_index |
|
|
|
|
|
@torch.no_grad() |
|
def audio_fake_input(self, device): |
|
return torch.zeros(5, len(self.config.audio_config.vq_config.codebook_sizes), dtype=torch.int32, device=device) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
seqlens: Optional[torch.IntTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
audios_tokens: Optional[List|torch.Tensor] = None, |
|
images: Optional[List|torch.Tensor] = None, |
|
patch_nums: Optional[torch.Tensor] = None, |
|
images_grid: Optional[List|torch.Tensor] = None, |
|
videos: Optional[List|torch.Tensor] = None, |
|
videos_patch_nums: Optional[torch.Tensor] = None, |
|
videos_grid: Optional[List|torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, OmniModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = True if (return_dict is not None or self.training) else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
group_index, audio_decoder_ret = None, None |
|
if inputs_embeds is None: |
|
sp_input_ids = get_sequence_parallel_chunk(input_ids) |
|
inputs_embeds = self.embed_tokens(sp_input_ids) |
|
if audios_tokens is None or len(audios_tokens) <= 0 : |
|
audios_tokens = torch.zeros(5, len(self.config.audio_config.vq_config.codebook_sizes), dtype=torch.int32, device=input_ids.device) |
|
fake_input = True |
|
else: |
|
fake_input = False |
|
for i, audio_emb_layer in enumerate(self.audio_embed_layers): |
|
if i==0: |
|
audio_embs = audio_emb_layer(audios_tokens[..., i]) |
|
else: |
|
audio_embs += audio_emb_layer(audios_tokens[..., i]) |
|
inputs_embeds, group_index = self.get_multimodal_embed(sp_input_ids, inputs_embeds, audio_embs, self.config.audio_config.audio_pad_token_id, fake_input, group_index=group_index) |
|
|
|
if self.config.visual_config.enable or self.config.video_config.enable: |
|
inputs_embeds, group_index = self.get_visual_embed(sp_input_ids, inputs_embeds, images, patch_nums, images_grid, videos, videos_patch_nums, videos_grid, group_index=group_index) |
|
|
|
if seqlens is not None and seqlens.ndim == 2: |
|
cu_seqlens = [] |
|
offset, seqlen = 0, seqlens.size(1) |
|
for lens in seqlens: |
|
cu_seqlens.append(offset) |
|
cu_seqlens.extend((lens[(lens > 0) & (lens < seqlen)] + offset).tolist()) |
|
offset += seqlen |
|
cu_seqlens.append(offset) |
|
seqlens = torch.tensor(cu_seqlens, dtype=seqlens.dtype, device=seqlens.device) |
|
elif seqlens is None and self.training: |
|
seqlens = torch.arange( |
|
end=input_ids.size(0) + 1, |
|
dtype=torch.int32, |
|
device=input_ids.device |
|
) * input_ids.size(1) |
|
if seqlens is not None: |
|
attention_mask = None |
|
|
|
if seqlens is None and attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
if attention_mask is not None: |
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, False, group_index) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
seqlens, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
seqlens=seqlens, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
group_index=group_index, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class NormHead(nn.Module): |
|
def __init__(self, hidden_size, vocab_size, bias=False): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.vocab_size = vocab_size |
|
self.weight = nn.Parameter(torch.empty((self.vocab_size, self.hidden_size))) |
|
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
|
|
def forward(self, hidden_states, mask=None): |
|
norm_weight = nn.functional.normalize(self.weight) |
|
if mask is not None: |
|
mask = mask.to(norm_weight) |
|
norm_weight = norm_weight * mask + (1 - mask) * norm_weight.detach() |
|
return nn.functional.linear(hidden_states, norm_weight) |
|
|
|
|
|
def extra_repr(self) -> str: |
|
return f'in_features={self.hidden_size}, out_features={self.vocab_size}' |
|
|
|
@dataclass |
|
class OmniMMCausalLMOutputWithPast(ModelOutput): |
|
loss: Optional[torch.FloatTensor] = None |
|
logits: Optional[torch.FloatTensor] = None |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
audios_emb_for_infer: Optional[torch.FloatTensor] = None |
|
|
|
|
|
class CasualDepthTransformerLayer(nn.Module): |
|
def __init__(self, config, depth): |
|
super().__init__() |
|
self.config = config |
|
embed_size = config.hidden_size |
|
assert embed_size % 128 == 0 |
|
num_heads = embed_size // 128 |
|
self.self_attention = nn.MultiheadAttention(embed_dim=embed_size, num_heads=num_heads,batch_first=True) |
|
self.layernorm1 = RMSNorm(embed_size) |
|
self.layernorm2 = RMSNorm(embed_size) |
|
self.linear1 = nn.Linear(embed_size * depth, 2 * embed_size) |
|
self.linear2 = nn.Linear(2 * embed_size * depth, embed_size) |
|
|
|
def forward(self, x): |
|
seq_len = x.size(1) |
|
res = x |
|
x = self.layernorm1(x) |
|
src_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=1).bool().to(x.device) |
|
_x, _ = self.self_attention(x, x, x, is_causal=True, attn_mask=src_mask) |
|
res = _x + res |
|
res = self.layernorm2(res) |
|
x = torch.einsum('bld,tld->blt', res, torch.reshape(self.linear1.weight, (2 * self.config.hidden_size, -1, self.config.hidden_size))) |
|
x = torch.nn.functional.gelu(x) |
|
x = torch.einsum('blt,dlt->bld', x, torch.reshape(self.linear2.weight, (self.config.hidden_size, -1, 2 * self.config.hidden_size))) |
|
return res + x |
|
|
|
class OmniAudioHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
hidden_size = config.hidden_size |
|
self.transformer_layers = nn.ModuleList([ |
|
CasualDepthTransformerLayer(config, len(config.audio_config.vq_config.codebook_sizes)) |
|
for _ in range(config.audio_config.audio_head_transformer_layers) |
|
]) |
|
self.headnorm = RMSNorm(hidden_size) |
|
self.heads = nn.ModuleList([ |
|
nn.Linear(hidden_size, vq_size+1) |
|
for vq_size in config.audio_config.vq_config.codebook_sizes |
|
]) |
|
self.gradient_checkpointing = True |
|
|
|
def forward(self, x, audios_tokens, audio_emb_layers): |
|
cumsum_audio_embed = torch.stack([ |
|
audio_emb_layers[i](audios_tokens[..., i]) |
|
for i, vq_size in enumerate(self.config.audio_config.vq_config.codebook_sizes[:-1]) |
|
], dim=1) |
|
cumsum_audio_embed = torch.cumsum(cumsum_audio_embed, dim=1) |
|
hidden_states = torch.concat([x.reshape(-1, 1, self.config.hidden_size), cumsum_audio_embed], dim=1) |
|
assert hidden_states.size(1) == len(self.config.audio_config.vq_config.codebook_sizes) |
|
for i, tlayer in enumerate(self.transformer_layers): |
|
hidden_states = tlayer(hidden_states,) |
|
hidden_states = self.headnorm(hidden_states) |
|
logits = [head(hidden_states[:,i]) for i, head in enumerate(self.heads)] |
|
return logits |
|
|
|
|
|
class OmniForCausalLM(OmniPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
self.model = OmniModel(config) |
|
self.audio_tokenizer = OmniAudioTokenizer(config) |
|
self.audio_head = OmniAudioHead(config) |
|
if config.use_norm_head: |
|
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False) |
|
else: |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.post_init() |
|
|
|
@property |
|
def main_device(self): |
|
return self.lm_head.weight.device |
|
|
|
def bind_processor(self, tokenizer, **kwargs): |
|
self.processor = OmniMMProcessor( |
|
tokenizer=tokenizer, |
|
config=self.config, |
|
**kwargs, |
|
) |
|
return self.processor |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
seqlens: Optional[torch.IntTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
audios: Optional[List|torch.Tensor] = None, |
|
audios_tokens: Optional[List|torch.Tensor] = None, |
|
encoder_length: Optional[torch.Tensor] = None, |
|
bridge_length: Optional[torch.Tensor] = None, |
|
images: Optional[torch.Tensor] = None, |
|
patch_nums: Optional[torch.Tensor] = None, |
|
images_grid: Optional[torch.Tensor] = None, |
|
videos: Optional[torch.Tensor] = None, |
|
videos_patch_nums: Optional[torch.Tensor] = None, |
|
videos_grid: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if audios_tokens is not None: |
|
assert isinstance(audios_tokens, torch.Tensor) |
|
else: |
|
if audios is None or len(audios) == 0: |
|
audios_tokens = None |
|
else: |
|
audios_tokens = self.audio_tokenizer(audios,encoder_length,bridge_length) |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
seqlens=seqlens, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
audios_tokens=audios_tokens, |
|
images=images, |
|
patch_nums=patch_nums, |
|
images_grid=images_grid, |
|
videos=videos, |
|
videos_patch_nums=videos_patch_nums, |
|
videos_grid=videos_grid, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = outputs.last_hidden_state |
|
audios_emb_for_infer = hidden_states[:,-1,:] |
|
logits = self.lm_head(hidden_states) |
|
|
|
return OmniMMCausalLMOutputWithPast( |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
audios_emb_for_infer=audios_emb_for_infer |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, past_key_values[0][0].shape[-2]:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) |
|
|
|
if past_key_values: |
|
position_ids = position_ids[:, past_key_values[0][0].shape[-2]:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
elif past_key_values is not None: |
|
model_inputs = {"input_ids": input_ids} |
|
else: |
|
model_inputs = {"input_ids": input_ids, |
|
"audios": kwargs.get("audios", None), "encoder_length": kwargs.get("encoder_length", None), "bridge_length": kwargs.get("bridge_length", None), |
|
"audios_tokens": kwargs.get("audios_tokens", None), |
|
"images": kwargs.get("images", None), |
|
"videos": kwargs.get("videos", None) |
|
} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"images_grid": kwargs.get("images_grid"), |
|
"videos_grid": kwargs.get("videos_grid"), |
|
"patch_nums": kwargs.get("patch_nums"), |
|
"videos_patch_nums": kwargs.get("videos_patch_nums"), |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) |
|
return reordered_past |
|
|
|
def chat(self, tokenizer, messages: List[dict], stream=False, |
|
generation_config: Optional[GenerationConfig]=None): |
|
generation_config = generation_config or self.generation_config |
|
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens) |
|
if stream: |
|
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
Thread(target=self.generate, kwargs=dict( |
|
inputs=input_ids, streamer=streamer, |
|
generation_config=generation_config, |
|
)).start() |
|
return streamer |
|
else: |
|
outputs = self.generate(input_ids, generation_config=generation_config) |
|
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True) |
|
return response |
|
|
|
|
|
class OmniAudioTokenizer(OmniPreTrainedModel): |
|
""" |
|
Construct an audio tokenizer and decoder. |
|
""" |
|
def __init__(self, config: OmniConfig): |
|
super().__init__(config) |
|
self.padding_idx = None |
|
self.vocab_size = config.vocab_size |
|
self.training = False |
|
self.eval() |
|
self.audio_model = OmniAudioEncoder(config.audio_config) |
|
self.audio_bridge_model = OmniAudioVQBridgeTokenizer(config) |
|
if config.vocoder_config.enable: |
|
self.audio_decoder = OmniAudioDecoder(config) |
|
if config.flow_matching_config.enable: |
|
self.audio_flow_matching_decoder = OmniAudioFlowMatchingDecoder(config) |
|
|
|
def encode(self, x, encoder_length: Optional[torch.Tensor] = None, |
|
bridge_length: Optional[torch.Tensor] = None): |
|
audio_emb = self.audio_model(x, encoder_length) |
|
audios_tokens = self.audio_bridge_model(audio_emb, bridge_length) |
|
return audios_tokens |
|
|
|
def decode(self, audio_code_ids, bridge_length: Optional[torch.Tensor] = None): |
|
assert self.config.vocoder_config.enable, "Vocoder is not enabled in config." |
|
audio_emb = self.audio_bridge_model.decode(audio_code_ids) |
|
audio_dec = self.audio_decoder( |
|
audio_emb.to(next(self.audio_decoder.parameters())), bridge_length |
|
) |
|
if self.config.flow_matching_config.enable: |
|
if self.config.flow_matching_config.use_hidden_states_before_dconv2: |
|
hidden_states, hidden_states_length = ( |
|
self.audio_flow_matching_decoder.unpack_hidden_states( |
|
audio_dec.hidden_states_before_dconv2, |
|
audio_dec.output_length_before_dconv2, |
|
) |
|
) |
|
audio_flow_matching_decoder_ret = self.audio_flow_matching_decoder( |
|
hidden_states, hidden_states_length |
|
) |
|
|
|
else: |
|
audio_flow_matching_decoder_ret = self.audio_flow_matching_decoder( |
|
audio_dec.refined_mel, audio_dec.mel_length |
|
) |
|
return audio_flow_matching_decoder_ret |
|
else: |
|
return audio_dec |
|
|
|
@torch.no_grad() |
|
def forward(self, audios, encoder_length: Optional[torch.Tensor] = None, bridge_length: Optional[torch.Tensor] = None): |
|
self.eval() |
|
audios_tokens = self.encode(audios, encoder_length, bridge_length) |
|
return audios_tokens |
|
|