Badr Abdullah commited on
Commit
a23536a
1 Parent(s): 99f5df9

Model save

Browse files
Files changed (1) hide show
  1. README.md +108 -196
README.md CHANGED
@@ -1,199 +1,111 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: facebook/wav2vec2-xls-r-300m
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - common_voice_17_0
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: xls-r-300m-hbs-phoneme-unfrozen-batch16
12
+ results:
13
+ - task:
14
+ name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
+ dataset:
17
+ name: common_voice_17_0
18
+ type: common_voice_17_0
19
+ config: hsb
20
+ split: test
21
+ args: hsb
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.4111996251171509
26
  ---
27
 
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/badr-nlp/xlsr-continual-finetuning/runs/7invqf4p)
32
+ # xls-r-300m-hbs-phoneme-unfrozen-batch16
33
+
34
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_17_0 dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.7105
37
+ - Wer: 0.4112
38
+ - Cer: 0.0948
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 0.0003
58
+ - train_batch_size: 16
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - gradient_accumulation_steps: 2
62
+ - total_train_batch_size: 32
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - lr_scheduler_warmup_steps: 500
66
+ - num_epochs: 100
67
+ - mixed_precision_training: Native AMP
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
72
+ |:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
73
+ | 3.6184 | 3.2258 | 100 | 3.4215 | 1.0 | 1.0 |
74
+ | 3.2927 | 6.4516 | 200 | 3.2247 | 1.0 | 1.0 |
75
+ | 3.2291 | 9.6774 | 300 | 3.2021 | 1.0 | 1.0000 |
76
+ | 1.4844 | 12.9032 | 400 | 1.3507 | 0.9857 | 0.2837 |
77
+ | 0.4136 | 16.1290 | 500 | 0.6982 | 0.6567 | 0.1608 |
78
+ | 0.2346 | 19.3548 | 600 | 0.6496 | 0.5956 | 0.1466 |
79
+ | 0.1401 | 22.5806 | 700 | 0.6680 | 0.5565 | 0.1314 |
80
+ | 0.1535 | 25.8065 | 800 | 0.6597 | 0.5026 | 0.1190 |
81
+ | 0.1165 | 29.0323 | 900 | 0.7085 | 0.5112 | 0.1224 |
82
+ | 0.076 | 32.2581 | 1000 | 0.7359 | 0.5026 | 0.1195 |
83
+ | 0.083 | 35.4839 | 1100 | 0.7144 | 0.4991 | 0.1205 |
84
+ | 0.0985 | 38.7097 | 1200 | 0.6907 | 0.4756 | 0.1120 |
85
+ | 0.052 | 41.9355 | 1300 | 0.6806 | 0.4700 | 0.1105 |
86
+ | 0.0347 | 45.1613 | 1400 | 0.7097 | 0.4588 | 0.1091 |
87
+ | 0.0432 | 48.3871 | 1500 | 0.7086 | 0.4649 | 0.1093 |
88
+ | 0.0626 | 51.6129 | 1600 | 0.6947 | 0.4393 | 0.1029 |
89
+ | 0.0474 | 54.8387 | 1700 | 0.6915 | 0.4468 | 0.1058 |
90
+ | 0.057 | 58.0645 | 1800 | 0.7068 | 0.4358 | 0.1020 |
91
+ | 0.0373 | 61.2903 | 1900 | 0.7140 | 0.4419 | 0.1037 |
92
+ | 0.0994 | 64.5161 | 2000 | 0.6966 | 0.4208 | 0.0987 |
93
+ | 0.0503 | 67.7419 | 2100 | 0.6997 | 0.4306 | 0.0988 |
94
+ | 0.0418 | 70.9677 | 2200 | 0.7105 | 0.4353 | 0.1006 |
95
+ | 0.036 | 74.1935 | 2300 | 0.7320 | 0.4356 | 0.1024 |
96
+ | 0.0171 | 77.4194 | 2400 | 0.7132 | 0.4257 | 0.0994 |
97
+ | 0.0234 | 80.6452 | 2500 | 0.7059 | 0.4171 | 0.0967 |
98
+ | 0.0335 | 83.8710 | 2600 | 0.7449 | 0.4140 | 0.0973 |
99
+ | 0.0288 | 87.0968 | 2700 | 0.7028 | 0.4157 | 0.0964 |
100
+ | 0.0344 | 90.3226 | 2800 | 0.7181 | 0.4112 | 0.0960 |
101
+ | 0.0298 | 93.5484 | 2900 | 0.7150 | 0.4105 | 0.0951 |
102
+ | 0.0532 | 96.7742 | 3000 | 0.7164 | 0.4119 | 0.0950 |
103
+ | 0.0058 | 100.0 | 3100 | 0.7105 | 0.4112 | 0.0948 |
104
+
105
+
106
+ ### Framework versions
107
+
108
+ - Transformers 4.42.0.dev0
109
+ - Pytorch 2.3.1+cu121
110
+ - Datasets 2.19.2
111
+ - Tokenizers 0.19.1