system HF staff commited on
Commit
c374e3e
·
1 Parent(s): 65ab668

Commit From AutoTrain

Browse files
.gitattributes CHANGED
@@ -32,3 +32,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
36
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - autotrain
4
+ - text-classification
5
+ language:
6
+ - en
7
+ widget:
8
+ - text: "I love AutoTrain 🤗"
9
+ datasets:
10
+ - badalsahani/autotrain-data-text-classification
11
+ co2_eq_emissions:
12
+ emissions: 7.761992510873142
13
+ ---
14
+
15
+ # Model Trained Using AutoTrain
16
+
17
+ - Problem type: Multi-class Classification
18
+ - Model ID: 3486594647
19
+ - CO2 Emissions (in grams): 7.7620
20
+
21
+ ## Validation Metrics
22
+
23
+ - Loss: 0.008
24
+ - Accuracy: 1.000
25
+ - Macro F1: 1.000
26
+ - Micro F1: 1.000
27
+ - Weighted F1: 1.000
28
+ - Macro Precision: 1.000
29
+ - Micro Precision: 1.000
30
+ - Weighted Precision: 1.000
31
+ - Macro Recall: 1.000
32
+ - Micro Recall: 1.000
33
+ - Weighted Recall: 1.000
34
+
35
+
36
+ ## Usage
37
+
38
+ You can use cURL to access this model:
39
+
40
+ ```
41
+ $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/badalsahani/autotrain-text-classification-3486594647
42
+ ```
43
+
44
+ Or Python API:
45
+
46
+ ```
47
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
48
+
49
+ model = AutoModelForSequenceClassification.from_pretrained("badalsahani/autotrain-text-classification-3486594647", use_auth_token=True)
50
+
51
+ tokenizer = AutoTokenizer.from_pretrained("badalsahani/autotrain-text-classification-3486594647", use_auth_token=True)
52
+
53
+ inputs = tokenizer("I love AutoTrain", return_tensors="pt")
54
+
55
+ outputs = model(**inputs)
56
+ ```
config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "AutoTrain",
3
+ "_num_labels": 13,
4
+ "architectures": [
5
+ "BertForSequenceClassification"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 1024,
14
+ "id2label": {
15
+ "0": "biology",
16
+ "1": "business-studies",
17
+ "2": "chemistry",
18
+ "3": "computer science",
19
+ "4": "economics",
20
+ "5": "english literature",
21
+ "6": "geography",
22
+ "7": "history",
23
+ "8": "mathematics",
24
+ "9": "physics",
25
+ "10": "political science",
26
+ "11": "psychology",
27
+ "12": "sociology"
28
+ },
29
+ "initializer_range": 0.02,
30
+ "intermediate_size": 4096,
31
+ "label2id": {
32
+ "biology": 0,
33
+ "business-studies": 1,
34
+ "chemistry": 2,
35
+ "computer science": 3,
36
+ "economics": 4,
37
+ "english literature": 5,
38
+ "geography": 6,
39
+ "history": 7,
40
+ "mathematics": 8,
41
+ "physics": 9,
42
+ "political science": 10,
43
+ "psychology": 11,
44
+ "sociology": 12
45
+ },
46
+ "layer_norm_eps": 1e-12,
47
+ "max_length": 512,
48
+ "max_position_embeddings": 512,
49
+ "model_type": "bert",
50
+ "num_attention_heads": 16,
51
+ "num_hidden_layers": 24,
52
+ "pad_token_id": 0,
53
+ "padding": "max_length",
54
+ "pooler_fc_size": 768,
55
+ "pooler_num_attention_heads": 12,
56
+ "pooler_num_fc_layers": 3,
57
+ "pooler_size_per_head": 128,
58
+ "pooler_type": "first_token_transform",
59
+ "position_embedding_type": "absolute",
60
+ "problem_type": "single_label_classification",
61
+ "torch_dtype": "float32",
62
+ "transformers_version": "4.25.1",
63
+ "type_vocab_size": 2,
64
+ "use_cache": true,
65
+ "vocab_size": 28996
66
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d30aa4d406bae7af0d328f05624b45e3e2fea3c7d0ca5d67c2e9e3067af7cf6f
3
+ size 1334509173
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca505be6b19b59c080886f9c41db8971878f4876cb59cdf87aa30b34fee28d67
3
+ size 669188
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_lower_case": false,
4
+ "mask_token": "[MASK]",
5
+ "model_max_length": 512,
6
+ "name_or_path": "AutoTrain",
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "special_tokens_map_file": null,
10
+ "strip_accents": null,
11
+ "tokenize_chinese_chars": true,
12
+ "tokenizer_class": "BertTokenizer",
13
+ "unk_token": "[UNK]"
14
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff