bachiembmt
commited on
Commit
•
8747974
1
Parent(s):
c2db305
Create README.py
Browse files
README.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
4 |
+
from datasets import load_dataset
|
5 |
+
from torch.utils.data import DataLoader
|
6 |
+
|
7 |
+
# Load the GPT-2 tokenizer and model
|
8 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
9 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
10 |
+
|
11 |
+
# Define the loss function and optimizer
|
12 |
+
criterion = nn.CrossEntropyLoss()
|
13 |
+
optimizer = torch.optim.Adam(model.parameters())
|
14 |
+
|
15 |
+
# Get the training dataset from Hugging Face
|
16 |
+
dataset = load_dataset("wikitext", 'wikitext-103-v1')
|
17 |
+
|
18 |
+
# Define the number of training steps
|
19 |
+
num_steps = 1000
|
20 |
+
|
21 |
+
# Define the data loader
|
22 |
+
data_loader = DataLoader(dataset, batch_size=32, shuffle=True)
|
23 |
+
|
24 |
+
# Training loop
|
25 |
+
for step in range(num_steps):
|
26 |
+
|
27 |
+
# Get the next batch of data
|
28 |
+
input_ids = dataset['train'][step]['text']
|
29 |
+
labels = dataset['train'][step]['text']
|
30 |
+
|
31 |
+
if not input_ids or not labels:
|
32 |
+
continue
|
33 |
+
|
34 |
+
input_ids = tokenizer.encode(input_ids, return_tensors='pt').unsqueeze(0)
|
35 |
+
labels = tokenizer.encode(labels, return_tensors='pt').unsqueeze(0)
|
36 |
+
|
37 |
+
|
38 |
+
# Forward pass
|
39 |
+
outputs = model(input_ids)
|
40 |
+
logits = outputs[0]
|
41 |
+
|
42 |
+
# Compute the loss
|
43 |
+
loss = criterion(logits.view(-1, logits.size(-1)), labels.view(-1))
|
44 |
+
|
45 |
+
# Backward pass and optimization
|
46 |
+
optimizer.zero_grad()
|
47 |
+
loss.backward()
|
48 |
+
optimizer.step()
|
49 |
+
|
50 |
+
# Print the current loss
|
51 |
+
if step % 100 == 0:
|
52 |
+
print(f'Step {step}, Loss {loss.item()}')
|
53 |
+
|
54 |
+
# Save the fine-tuned model
|
55 |
+
torch.save(model.state_dict(), 'fine_tuned_gpt2.pth')
|