babakc commited on
Commit
053ec4d
·
1 Parent(s): 0880044

first model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 259.76 +/- 12.15
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0338f44c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0338f44ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0338f44d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0338f44dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f0338f44e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f0338f44ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0338f44f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0338f49040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0338f490d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0338f49160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0338f491f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0338f49280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0338f48090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673741120483802848, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqdrTxpC1U9FjUUvvHZYb5Eq+a9YoPJvQAAAAAAAAAAzcbPPPYHhj8kjxW9QWuuvuZZfrtLTPa8AAAAAAAAAABmpoa9CwHaPUOhPz5n6X6+W52ePToFhzoAAAAAAAAAADMbrDy6AIU+PT2OvXhkg77BsR88OiSDPAAAAAAAAAAAmri1vGlmSbyyysu7HM0fPMHpsT2W1Qi9AACAPwAAgD8AjJ67FrAdPaN3sr1Tix++VXmGvT7LwD0AAAAAAAAAAEBB5z2TELY+YwxsvdcFcr4kfhq83zEpPQAAAAAAAAAA/WVjvtgHVz+ItWG8bOKXvijVf74uKtc9AAAAAAAAAACzu8C9g+oOPS55IT6RZ3q+R3FqPT5i6r0AAAAAAAAAALPviD12I44/e3oiPnZG6L7yC7Y9KpvNPAAAAAAAAAAADVj3vUhP7j5BHIk+Ojt3vhAxhz0Wgnw9AAAAAAAAAABgplA+c1APP75eyr052LS+En2dPXX7/b0AAAAAAAAAAM0unj30S+U9JTBavlebSr6CviW92QvCuwAAAAAAAAAAM0dyPQt57D0ajNY624ZLvpeyozx5WAK6AAAAAAAAAADN9zK9jwdjvGehFjvVWI48NofEvcOPZz0AAIA/AACAP4A/0T10mv499upzvub9EL6kpW29jaiavAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImL7XEFycckCUhpRSlIwBbJRNTgGMAXSUR0CWqrvysjmkdX2UKGgGaAloD0MIXAAapctycUCUhpRSlGgVTRwBaBZHQJaquUnogV51fZQoaAZoCWgPQwiESIYc25txQJSGlFKUaBVNDwFoFkdAlqtbZezD43V9lChoBmgJaA9DCHrejQXFOnBAlIaUUpRoFU0iAWgWR0CWrBXHR1HOdX2UKGgGaAloD0MI1QYnol+BbkCUhpRSlGgVTTYBaBZHQJat5lXiiqR1fZQoaAZoCWgPQwi5jJsaaHJxQJSGlFKUaBVNHwFoFkdAlq7cQqZtvXV9lChoBmgJaA9DCDPiAtBodXJAlIaUUpRoFU0NAWgWR0CWr37/4qPPdX2UKGgGaAloD0MIECBDx06qcUCUhpRSlGgVTREBaBZHQJawGjTKDCh1fZQoaAZoCWgPQwheu7ThsAFvQJSGlFKUaBVNCQFoFkdAlrBdE1EVnHV9lChoBmgJaA9DCGtHcY46KHFAlIaUUpRoFU05AWgWR0CWsGZ0CA+ZdX2UKGgGaAloD0MI/WfNj78pbkCUhpRSlGgVTXsBaBZHQJaxlcQiA2B1fZQoaAZoCWgPQwjiBnx+mLpwQJSGlFKUaBVNNgFoFkdAlrG3cL0BfnV9lChoBmgJaA9DCGngRzXsF21AlIaUUpRoFU0mAWgWR0CWseb8WKuTdX2UKGgGaAloD0MIsTVbecnucUCUhpRSlGgVTSIBaBZHQJax4oCuEEl1fZQoaAZoCWgPQwjcf2Q69AhuQJSGlFKUaBVNNAFoFkdAlrIgkX1rZnV9lChoBmgJaA9DCAU25+DZIHFAlIaUUpRoFU0GAWgWR0CWslsjFAE/dX2UKGgGaAloD0MI3j6rzFRDcECUhpRSlGgVTQ0BaBZHQJayiU/wAlx1fZQoaAZoCWgPQwjyfXGpyjptQJSGlFKUaBVL/WgWR0CWsrVj7Q9idX2UKGgGaAloD0MIuB0aFiO7cECUhpRSlGgVTT0BaBZHQJaytdszl911fZQoaAZoCWgPQwjw+PaugRdxQJSGlFKUaBVNFQFoFkdAlrPFX/5tWXV9lChoBmgJaA9DCMLB3sSQ0ExAlIaUUpRoFUu+aBZHQJa054Pf8/F1fZQoaAZoCWgPQwjNqzqrBWpvQJSGlFKUaBVNCQFoFkdAlrUi/O+qR3V9lChoBmgJaA9DCHU+PEtQ+3FAlIaUUpRoFU0gAWgWR0CWtqt+1Bt2dX2UKGgGaAloD0MI3jzVITcTbUCUhpRSlGgVS/ZoFkdAlra6Cg9Ne3V9lChoBmgJaA9DCGglrfgGa3BAlIaUUpRoFU0AAWgWR0CWtvoePq9odX2UKGgGaAloD0MImfG20qu6cUCUhpRSlGgVTSUBaBZHQJa3W7btZ3d1fZQoaAZoCWgPQwgiUP2DiCxwQJSGlFKUaBVNGQFoFkdAlrk8vRJEpnV9lChoBmgJaA9DCLgFS3VBNHBAlIaUUpRoFU0hAWgWR0CWuYAAhje9dX2UKGgGaAloD0MIeO+oMeGkckCUhpRSlGgVTSYBaBZHQJa6AYoAn2J1fZQoaAZoCWgPQwjHLlG9dYByQJSGlFKUaBVNPQFoFkdAlrokNnXd03V9lChoBmgJaA9DCOVjd4HSPXJAlIaUUpRoFU03AWgWR0CWutabnX/YdX2UKGgGaAloD0MIlWbzOMw6cUCUhpRSlGgVTVoBaBZHQJa7LQTmGM51fZQoaAZoCWgPQwgcCMkCpu1wQJSGlFKUaBVNMgFoFkdAlrsyp3os7XV9lChoBmgJaA9DCJNzYg9ta3FAlIaUUpRoFU0+AWgWR0CWu0pKjBVNdX2UKGgGaAloD0MIfJkoQuowcECUhpRSlGgVTTQBaBZHQJa7QlE7W/d1fZQoaAZoCWgPQwjkMJi/whVtQJSGlFKUaBVNIwFoFkdAlrwf+sHSnnV9lChoBmgJaA9DCJqUgm4vo0dAlIaUUpRoFUvVaBZHQJa9JEofCAN1fZQoaAZoCWgPQwgvi4nNxwFuQJSGlFKUaBVNDAFoFkdAlr52bPQfIXV9lChoBmgJaA9DCPiqlQm/DHJAlIaUUpRoFU1eAWgWR0CWvxEsJ6Y3dX2UKGgGaAloD0MIZDvfT837ckCUhpRSlGgVTSIBaBZHQJa/K+8Gs3h1fZQoaAZoCWgPQwi7XwX4LuBwQJSGlFKUaBVNaQFoFkdAlr+dKyv9tXV9lChoBmgJaA9DCNifxOfOhG9AlIaUUpRoFU05AWgWR0CWwHc/MW43dX2UKGgGaAloD0MI7X2qCo0CckCUhpRSlGgVTQoBaBZHQJbBCzkZJkJ1fZQoaAZoCWgPQwiAft+/eVRSQJSGlFKUaBVL4mgWR0CW1C1gpjMFdX2UKGgGaAloD0MI7nvUX688b0CUhpRSlGgVTQYBaBZHQJbUQCbMHKR1fZQoaAZoCWgPQwg4aoXpewRxQJSGlFKUaBVNJwFoFkdAltUXmV7hN3V9lChoBmgJaA9DCKRyE7U0sXJAlIaUUpRoFU1AAWgWR0CW1TBhhH9WdX2UKGgGaAloD0MIYhQEjy/7cUCUhpRSlGgVTQEBaBZHQJbVJnyup0h1fZQoaAZoCWgPQwhXBP9byYBwQJSGlFKUaBVNFQFoFkdAltWZAprk83V9lChoBmgJaA9DCOmayTebKHNAlIaUUpRoFU0hAWgWR0CW1Z7Qb+98dX2UKGgGaAloD0MI6/8c5gufcUCUhpRSlGgVTS8BaBZHQJbWRxtHhCN1fZQoaAZoCWgPQwgpkxraALpwQJSGlFKUaBVNNAFoFkdAltdJeE7GN3V9lChoBmgJaA9DCMZpiCp8Y29AlIaUUpRoFU0KAWgWR0CW10rpJPIodX2UKGgGaAloD0MILbXebzTKbkCUhpRSlGgVTRUBaBZHQJbZTGACnxd1fZQoaAZoCWgPQwi2SUVj7W5vQJSGlFKUaBVNFwFoFkdAltl72Dg62nV9lChoBmgJaA9DCLMMcawLKm5AlIaUUpRoFU0XAWgWR0CW2fHjZL7GdX2UKGgGaAloD0MIZTVdT3SNbUCUhpRSlGgVTQUBaBZHQJbaRWn0kGB1fZQoaAZoCWgPQwhDVOHP8HNyQJSGlFKUaBVNUwFoFkdAltqG/i5uqHV9lChoBmgJaA9DCA1v1uC9THBAlIaUUpRoFU0YAWgWR0CW21Gn4wh4dX2UKGgGaAloD0MILquwGeCEbkCUhpRSlGgVTRIBaBZHQJbbfesPrfN1fZQoaAZoCWgPQwjiI2JKZANxQJSGlFKUaBVNFgFoFkdAltuqQA+6iHV9lChoBmgJaA9DCBRCB11CC3NAlIaUUpRoFU0MAWgWR0CW3C/gBLf2dX2UKGgGaAloD0MIQ6uTMxTbcECUhpRSlGgVTQwBaBZHQJbcqlvZRKp1fZQoaAZoCWgPQwimRBK9zO5xQJSGlFKUaBVL+GgWR0CW3ONahYeUdX2UKGgGaAloD0MIqMgh4mZVb0CUhpRSlGgVTTIBaBZHQJbdIIsyzol1fZQoaAZoCWgPQwiBlxk2CoZzQJSGlFKUaBVNMwFoFkdAlt0748EFGHV9lChoBmgJaA9DCMuAs5Rs7HBAlIaUUpRoFU0sAWgWR0CW3W0IToMbdX2UKGgGaAloD0MIN6rTgWwicUCUhpRSlGgVTREBaBZHQJbefSYw7DF1fZQoaAZoCWgPQwj1L0llioFwQJSGlFKUaBVNSgFoFkdAluAXb212JXV9lChoBmgJaA9DCKWeBaH8z3NAlIaUUpRoFU0iAWgWR0CW4YAMDwH8dX2UKGgGaAloD0MIQnqKHKJgbECUhpRSlGgVTSoBaBZHQJbhku+RHPN1fZQoaAZoCWgPQwh6jsh3qTVwQJSGlFKUaBVNBwFoFkdAluHN4JNTLnV9lChoBmgJaA9DCHBgcqNINXBAlIaUUpRoFU0mAWgWR0CW4iL+xW1ddX2UKGgGaAloD0MIGw5LA78ncUCUhpRSlGgVTSMBaBZHQJbiY1ivxH51fZQoaAZoCWgPQwgDYDyDhpVvQJSGlFKUaBVNCgFoFkdAluLCdBjWkXV9lChoBmgJaA9DCOylKQIcFnBAlIaUUpRoFU0UAWgWR0CW4zmozeoDdX2UKGgGaAloD0MIhuP5DKg3UECUhpRSlGgVS81oFkdAluNhc/t6X3V9lChoBmgJaA9DCItTrYWZ2nFAlIaUUpRoFU0MAWgWR0CW5EY4yXUpdX2UKGgGaAloD0MItAHYgIhEcUCUhpRSlGgVTT4BaBZHQJbkliZv1lJ1fZQoaAZoCWgPQwhQGmoUkuFtQJSGlFKUaBVNNQFoFkdAluTrBTGYKXV9lChoBmgJaA9DCMR5OIHpi25AlIaUUpRoFU0iAWgWR0CW5SLfDUExdX2UKGgGaAloD0MIj9/b9GfybECUhpRSlGgVTSYBaBZHQJbldzBAOax1fZQoaAZoCWgPQwgXLNUFvJZyQJSGlFKUaBVNZQFoFkdAluc2MXJo03V9lChoBmgJaA9DCDrq6LgawnBAlIaUUpRoFU02AWgWR0CW52K+zt1IdX2UKGgGaAloD0MIqyFxjyWzb0CUhpRSlGgVTUUBaBZHQJbp00cfeUJ1fZQoaAZoCWgPQwinIhXG1gpwQJSGlFKUaBVNIAFoFkdAluoIxcmjTXV9lChoBmgJaA9DCEq2upwSJHBAlIaUUpRoFU0fAWgWR0CW6kQxN7BwdX2UKGgGaAloD0MIvOtsyD8wc0CUhpRSlGgVTTMBaBZHQJbqmyeI2wV1fZQoaAZoCWgPQwgB+KdUicxsQJSGlFKUaBVNGwFoFkdAluq7WZqmCXV9lChoBmgJaA9DCPse9deriXBAlIaUUpRoFU0mAWgWR0CW6s48EFGHdX2UKGgGaAloD0MIKH/3jpqUbkCUhpRSlGgVTRIBaBZHQJbq1vjwQUZ1fZQoaAZoCWgPQwjRdeEH5zRuQJSGlFKUaBVNFgFoFkdAlutWBas6rHV9lChoBmgJaA9DCO7O2m2X9G1AlIaUUpRoFU0YAWgWR0CW64Y0VJtjdX2UKGgGaAloD0MIoUeMntt3b0CUhpRSlGgVTQsBaBZHQJbsO/ATIvJ1fZQoaAZoCWgPQwixpNx9jtFxQJSGlFKUaBVNGQFoFkdAluxO8wpOOHV9lChoBmgJaA9DCM/Yl2w8029AlIaUUpRoFU0OAWgWR0CW7MPiT+vRdX2UKGgGaAloD0MIeZJ0zeSIcUCUhpRSlGgVTTkBaBZHQJbtoHyEtd11fZQoaAZoCWgPQwi8rl+wG8lyQJSGlFKUaBVL/WgWR0CW7mTNMXabdX2UKGgGaAloD0MIamtEME7VcECUhpRSlGgVTUIBaBZHQJbub5TIeYF1fZQoaAZoCWgPQwgHtHQF21NyQJSGlFKUaBVNFgFoFkdAlu8iHqNZNnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe25b16f18ed74bdbe573258fcb25c676def635b4ceee6c6ce156443f6fa8917
3
+ size 147416
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0338f44c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0338f44ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0338f44d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0338f44dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0338f44e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0338f44ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0338f44f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0338f49040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0338f490d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0338f49160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0338f491f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0338f49280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f0338f48090>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673741120483802848,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqdrTxpC1U9FjUUvvHZYb5Eq+a9YoPJvQAAAAAAAAAAzcbPPPYHhj8kjxW9QWuuvuZZfrtLTPa8AAAAAAAAAABmpoa9CwHaPUOhPz5n6X6+W52ePToFhzoAAAAAAAAAADMbrDy6AIU+PT2OvXhkg77BsR88OiSDPAAAAAAAAAAAmri1vGlmSbyyysu7HM0fPMHpsT2W1Qi9AACAPwAAgD8AjJ67FrAdPaN3sr1Tix++VXmGvT7LwD0AAAAAAAAAAEBB5z2TELY+YwxsvdcFcr4kfhq83zEpPQAAAAAAAAAA/WVjvtgHVz+ItWG8bOKXvijVf74uKtc9AAAAAAAAAACzu8C9g+oOPS55IT6RZ3q+R3FqPT5i6r0AAAAAAAAAALPviD12I44/e3oiPnZG6L7yC7Y9KpvNPAAAAAAAAAAADVj3vUhP7j5BHIk+Ojt3vhAxhz0Wgnw9AAAAAAAAAABgplA+c1APP75eyr052LS+En2dPXX7/b0AAAAAAAAAAM0unj30S+U9JTBavlebSr6CviW92QvCuwAAAAAAAAAAM0dyPQt57D0ajNY624ZLvpeyozx5WAK6AAAAAAAAAADN9zK9jwdjvGehFjvVWI48NofEvcOPZz0AAIA/AACAP4A/0T10mv499upzvub9EL6kpW29jaiavAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImL7XEFycckCUhpRSlIwBbJRNTgGMAXSUR0CWqrvysjmkdX2UKGgGaAloD0MIXAAapctycUCUhpRSlGgVTRwBaBZHQJaquUnogV51fZQoaAZoCWgPQwiESIYc25txQJSGlFKUaBVNDwFoFkdAlqtbZezD43V9lChoBmgJaA9DCHrejQXFOnBAlIaUUpRoFU0iAWgWR0CWrBXHR1HOdX2UKGgGaAloD0MI1QYnol+BbkCUhpRSlGgVTTYBaBZHQJat5lXiiqR1fZQoaAZoCWgPQwi5jJsaaHJxQJSGlFKUaBVNHwFoFkdAlq7cQqZtvXV9lChoBmgJaA9DCDPiAtBodXJAlIaUUpRoFU0NAWgWR0CWr37/4qPPdX2UKGgGaAloD0MIECBDx06qcUCUhpRSlGgVTREBaBZHQJawGjTKDCh1fZQoaAZoCWgPQwheu7ThsAFvQJSGlFKUaBVNCQFoFkdAlrBdE1EVnHV9lChoBmgJaA9DCGtHcY46KHFAlIaUUpRoFU05AWgWR0CWsGZ0CA+ZdX2UKGgGaAloD0MI/WfNj78pbkCUhpRSlGgVTXsBaBZHQJaxlcQiA2B1fZQoaAZoCWgPQwjiBnx+mLpwQJSGlFKUaBVNNgFoFkdAlrG3cL0BfnV9lChoBmgJaA9DCGngRzXsF21AlIaUUpRoFU0mAWgWR0CWseb8WKuTdX2UKGgGaAloD0MIsTVbecnucUCUhpRSlGgVTSIBaBZHQJax4oCuEEl1fZQoaAZoCWgPQwjcf2Q69AhuQJSGlFKUaBVNNAFoFkdAlrIgkX1rZnV9lChoBmgJaA9DCAU25+DZIHFAlIaUUpRoFU0GAWgWR0CWslsjFAE/dX2UKGgGaAloD0MI3j6rzFRDcECUhpRSlGgVTQ0BaBZHQJayiU/wAlx1fZQoaAZoCWgPQwjyfXGpyjptQJSGlFKUaBVL/WgWR0CWsrVj7Q9idX2UKGgGaAloD0MIuB0aFiO7cECUhpRSlGgVTT0BaBZHQJaytdszl911fZQoaAZoCWgPQwjw+PaugRdxQJSGlFKUaBVNFQFoFkdAlrPFX/5tWXV9lChoBmgJaA9DCMLB3sSQ0ExAlIaUUpRoFUu+aBZHQJa054Pf8/F1fZQoaAZoCWgPQwjNqzqrBWpvQJSGlFKUaBVNCQFoFkdAlrUi/O+qR3V9lChoBmgJaA9DCHU+PEtQ+3FAlIaUUpRoFU0gAWgWR0CWtqt+1Bt2dX2UKGgGaAloD0MI3jzVITcTbUCUhpRSlGgVS/ZoFkdAlra6Cg9Ne3V9lChoBmgJaA9DCGglrfgGa3BAlIaUUpRoFU0AAWgWR0CWtvoePq9odX2UKGgGaAloD0MImfG20qu6cUCUhpRSlGgVTSUBaBZHQJa3W7btZ3d1fZQoaAZoCWgPQwgiUP2DiCxwQJSGlFKUaBVNGQFoFkdAlrk8vRJEpnV9lChoBmgJaA9DCLgFS3VBNHBAlIaUUpRoFU0hAWgWR0CWuYAAhje9dX2UKGgGaAloD0MIeO+oMeGkckCUhpRSlGgVTSYBaBZHQJa6AYoAn2J1fZQoaAZoCWgPQwjHLlG9dYByQJSGlFKUaBVNPQFoFkdAlrokNnXd03V9lChoBmgJaA9DCOVjd4HSPXJAlIaUUpRoFU03AWgWR0CWutabnX/YdX2UKGgGaAloD0MIlWbzOMw6cUCUhpRSlGgVTVoBaBZHQJa7LQTmGM51fZQoaAZoCWgPQwgcCMkCpu1wQJSGlFKUaBVNMgFoFkdAlrsyp3os7XV9lChoBmgJaA9DCJNzYg9ta3FAlIaUUpRoFU0+AWgWR0CWu0pKjBVNdX2UKGgGaAloD0MIfJkoQuowcECUhpRSlGgVTTQBaBZHQJa7QlE7W/d1fZQoaAZoCWgPQwjkMJi/whVtQJSGlFKUaBVNIwFoFkdAlrwf+sHSnnV9lChoBmgJaA9DCJqUgm4vo0dAlIaUUpRoFUvVaBZHQJa9JEofCAN1fZQoaAZoCWgPQwgvi4nNxwFuQJSGlFKUaBVNDAFoFkdAlr52bPQfIXV9lChoBmgJaA9DCPiqlQm/DHJAlIaUUpRoFU1eAWgWR0CWvxEsJ6Y3dX2UKGgGaAloD0MIZDvfT837ckCUhpRSlGgVTSIBaBZHQJa/K+8Gs3h1fZQoaAZoCWgPQwi7XwX4LuBwQJSGlFKUaBVNaQFoFkdAlr+dKyv9tXV9lChoBmgJaA9DCNifxOfOhG9AlIaUUpRoFU05AWgWR0CWwHc/MW43dX2UKGgGaAloD0MI7X2qCo0CckCUhpRSlGgVTQoBaBZHQJbBCzkZJkJ1fZQoaAZoCWgPQwiAft+/eVRSQJSGlFKUaBVL4mgWR0CW1C1gpjMFdX2UKGgGaAloD0MI7nvUX688b0CUhpRSlGgVTQYBaBZHQJbUQCbMHKR1fZQoaAZoCWgPQwg4aoXpewRxQJSGlFKUaBVNJwFoFkdAltUXmV7hN3V9lChoBmgJaA9DCKRyE7U0sXJAlIaUUpRoFU1AAWgWR0CW1TBhhH9WdX2UKGgGaAloD0MIYhQEjy/7cUCUhpRSlGgVTQEBaBZHQJbVJnyup0h1fZQoaAZoCWgPQwhXBP9byYBwQJSGlFKUaBVNFQFoFkdAltWZAprk83V9lChoBmgJaA9DCOmayTebKHNAlIaUUpRoFU0hAWgWR0CW1Z7Qb+98dX2UKGgGaAloD0MI6/8c5gufcUCUhpRSlGgVTS8BaBZHQJbWRxtHhCN1fZQoaAZoCWgPQwgpkxraALpwQJSGlFKUaBVNNAFoFkdAltdJeE7GN3V9lChoBmgJaA9DCMZpiCp8Y29AlIaUUpRoFU0KAWgWR0CW10rpJPIodX2UKGgGaAloD0MILbXebzTKbkCUhpRSlGgVTRUBaBZHQJbZTGACnxd1fZQoaAZoCWgPQwi2SUVj7W5vQJSGlFKUaBVNFwFoFkdAltl72Dg62nV9lChoBmgJaA9DCLMMcawLKm5AlIaUUpRoFU0XAWgWR0CW2fHjZL7GdX2UKGgGaAloD0MIZTVdT3SNbUCUhpRSlGgVTQUBaBZHQJbaRWn0kGB1fZQoaAZoCWgPQwhDVOHP8HNyQJSGlFKUaBVNUwFoFkdAltqG/i5uqHV9lChoBmgJaA9DCA1v1uC9THBAlIaUUpRoFU0YAWgWR0CW21Gn4wh4dX2UKGgGaAloD0MILquwGeCEbkCUhpRSlGgVTRIBaBZHQJbbfesPrfN1fZQoaAZoCWgPQwjiI2JKZANxQJSGlFKUaBVNFgFoFkdAltuqQA+6iHV9lChoBmgJaA9DCBRCB11CC3NAlIaUUpRoFU0MAWgWR0CW3C/gBLf2dX2UKGgGaAloD0MIQ6uTMxTbcECUhpRSlGgVTQwBaBZHQJbcqlvZRKp1fZQoaAZoCWgPQwimRBK9zO5xQJSGlFKUaBVL+GgWR0CW3ONahYeUdX2UKGgGaAloD0MIqMgh4mZVb0CUhpRSlGgVTTIBaBZHQJbdIIsyzol1fZQoaAZoCWgPQwiBlxk2CoZzQJSGlFKUaBVNMwFoFkdAlt0748EFGHV9lChoBmgJaA9DCMuAs5Rs7HBAlIaUUpRoFU0sAWgWR0CW3W0IToMbdX2UKGgGaAloD0MIN6rTgWwicUCUhpRSlGgVTREBaBZHQJbefSYw7DF1fZQoaAZoCWgPQwj1L0llioFwQJSGlFKUaBVNSgFoFkdAluAXb212JXV9lChoBmgJaA9DCKWeBaH8z3NAlIaUUpRoFU0iAWgWR0CW4YAMDwH8dX2UKGgGaAloD0MIQnqKHKJgbECUhpRSlGgVTSoBaBZHQJbhku+RHPN1fZQoaAZoCWgPQwh6jsh3qTVwQJSGlFKUaBVNBwFoFkdAluHN4JNTLnV9lChoBmgJaA9DCHBgcqNINXBAlIaUUpRoFU0mAWgWR0CW4iL+xW1ddX2UKGgGaAloD0MIGw5LA78ncUCUhpRSlGgVTSMBaBZHQJbiY1ivxH51fZQoaAZoCWgPQwgDYDyDhpVvQJSGlFKUaBVNCgFoFkdAluLCdBjWkXV9lChoBmgJaA9DCOylKQIcFnBAlIaUUpRoFU0UAWgWR0CW4zmozeoDdX2UKGgGaAloD0MIhuP5DKg3UECUhpRSlGgVS81oFkdAluNhc/t6X3V9lChoBmgJaA9DCItTrYWZ2nFAlIaUUpRoFU0MAWgWR0CW5EY4yXUpdX2UKGgGaAloD0MItAHYgIhEcUCUhpRSlGgVTT4BaBZHQJbkliZv1lJ1fZQoaAZoCWgPQwhQGmoUkuFtQJSGlFKUaBVNNQFoFkdAluTrBTGYKXV9lChoBmgJaA9DCMR5OIHpi25AlIaUUpRoFU0iAWgWR0CW5SLfDUExdX2UKGgGaAloD0MIj9/b9GfybECUhpRSlGgVTSYBaBZHQJbldzBAOax1fZQoaAZoCWgPQwgXLNUFvJZyQJSGlFKUaBVNZQFoFkdAluc2MXJo03V9lChoBmgJaA9DCDrq6LgawnBAlIaUUpRoFU02AWgWR0CW52K+zt1IdX2UKGgGaAloD0MIqyFxjyWzb0CUhpRSlGgVTUUBaBZHQJbp00cfeUJ1fZQoaAZoCWgPQwinIhXG1gpwQJSGlFKUaBVNIAFoFkdAluoIxcmjTXV9lChoBmgJaA9DCEq2upwSJHBAlIaUUpRoFU0fAWgWR0CW6kQxN7BwdX2UKGgGaAloD0MIvOtsyD8wc0CUhpRSlGgVTTMBaBZHQJbqmyeI2wV1fZQoaAZoCWgPQwgB+KdUicxsQJSGlFKUaBVNGwFoFkdAluq7WZqmCXV9lChoBmgJaA9DCPse9deriXBAlIaUUpRoFU0mAWgWR0CW6s48EFGHdX2UKGgGaAloD0MIKH/3jpqUbkCUhpRSlGgVTRIBaBZHQJbq1vjwQUZ1fZQoaAZoCWgPQwjRdeEH5zRuQJSGlFKUaBVNFgFoFkdAlutWBas6rHV9lChoBmgJaA9DCO7O2m2X9G1AlIaUUpRoFU0YAWgWR0CW64Y0VJtjdX2UKGgGaAloD0MIoUeMntt3b0CUhpRSlGgVTQsBaBZHQJbsO/ATIvJ1fZQoaAZoCWgPQwixpNx9jtFxQJSGlFKUaBVNGQFoFkdAluxO8wpOOHV9lChoBmgJaA9DCM/Yl2w8029AlIaUUpRoFU0OAWgWR0CW7MPiT+vRdX2UKGgGaAloD0MIeZJ0zeSIcUCUhpRSlGgVTTkBaBZHQJbtoHyEtd11fZQoaAZoCWgPQwi8rl+wG8lyQJSGlFKUaBVL/WgWR0CW7mTNMXabdX2UKGgGaAloD0MIamtEME7VcECUhpRSlGgVTUIBaBZHQJbub5TIeYF1fZQoaAZoCWgPQwgHtHQF21NyQJSGlFKUaBVNFgFoFkdAlu8iHqNZNnVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dbaa1b160dd0f4fb2f85d98764924f6d220e8638aec77a04ec6fd150eb79e76
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7475b5a3d1117396296186327881c7255e7a394100a4613e4e5ea53aa114a76a
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (238 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 259.76016010051706, "std_reward": 12.153726018511968, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T00:33:35.398950"}